
MSc Artificial Intelligence
Track: Machine Learning

Master Thesis

Deep Reinforcement Learning
for Coordination in Traffic Light Control

by

Elise van der Pol
5982448

August 15, 2016

42 EC
November 2015 - August 2016

Supervisor:
Dr. Frans Oliehoek

Assessor:
Dr. Efstratios Gavves

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Abstract

The cost of traffic congestion in the EU is large, estimated to be 1% of the EU’s GDP, and good solutions
for traffic light control may reduce traffic congestion, saving time and money and reducing environmental
pollution. To find optimal traffic light control policies, reinforcement learning uses reward signals from the
environment to learn how to make optimal decisions. This approach can be deployed in traffic light control
to learn optimal traffic light policies to reduce traffic congestion. However, earlier reinforcement learning
approaches to traffic light control relied on simplifying assumptions over the state and manual feature
extraction, so that potentially vital information about the state is lost. Techniques from the field of deep
learning can be used in deep reinforcement learning to enable the use of more information over the state and
to potentially find better traffic light policies. This thesis builds upon the Deep Q-learning algorithm and
applies it to the problem of traffic light control. The contribution of this thesis is twofold: first, it extends
earlier research on applying Deep Q-learning to the problem of controlling traffic lights on intersections with
the goal of achieving optimal traffic throughput, and shows that, although Deep Q-learning can find very
good policies for the traffic control problem without manual feature extraction, stability is not a guarantee.
Second, it combines the Deep Q-learning algorithm with an existing multi-agent coordination algorithm to
achieve cooperation between traffic lights and improves upon earlier work related to coordination for traffic
light control. This thesis is the first work to combine transfer planning and deep reinforcement learning, an
approach that is empirically shown to be promising.

1

Acknowledgments

I would like to thank my supervisor, Frans Oliehoek for his guidance, many fruitful discussions, and for always
making time when I was in need of advice. Moreover, I would like to thank Efstratios Gavves and Joris Mooij
for agreeing to sit in my defense committee. Also, my thanks goes out to SurfSara which provided the much
needed infrastructure to perform evaluations. Finally, I want to thank Ivy van der Pol, Brigitte Koster, Emma
de Koster, Sharon Gieske and Jorn Peters for their extensive support & encouragement. An extra thanks to
Sharon Gieske and Jorn Peters for taking the time to proofread my thesis.

2

Contents

1 Introduction 5
1.1 Research Questions and Contributions . 5
1.2 Outline . 6

2 Deep Reinforcement Learning 7
2.1 Markov Decision Processes . 7

2.1.1 Partial Observability . 8
2.2 Tabular Q-learning . 8
2.3 Q-learning with Function Approximation . 9
2.4 Convergence Issues . 10

2.4.1 High Correlation Between Samples . 10
2.4.2 Non-stationary Data Distribution . 10
2.4.3 Moving Targets . 10
2.4.4 Convergence Conditions for Reinforcement Learning with Function Approximation 10

2.5 Deep Learning . 11
2.5.1 Neural Networks . 11
2.5.2 Optimization Algorithms . 11
2.5.3 Batch Normalization . 13
2.5.4 Convolutional networks . 13

2.6 Deep Reinforcement Learning . 14
2.7 Alleviating Convergence Issues . 14

2.7.1 Experience Replay . 14
2.7.2 Freezing Target Network . 15
2.7.3 Double Q-learning . 16

3 Deep Reinforcement Learning for Traffic Light Control 17
3.1 Traffic Light Control . 17
3.2 State Representations . 17

3.2.1 Linear Agent . 17
3.2.2 Deep Q-learning Agent . 18
3.2.3 Yellow Times . 20

3.3 Action Space . 21
3.4 Reward Function . 21
3.5 Single agent scenario . 21

4 Single Agent Experiments 23
4.1 Reward Function . 23
4.2 Demand Data . 24
4.3 Baseline . 24
4.4 Deep Q-learning Agent . 24
4.5 Stability Issues . 25

4.5.1 Network Architectures . 26
4.5.2 Learning rate . 27
4.5.3 Optimization Algorithms . 27
4.5.4 Batch Normalization . 28
4.5.5 Prioritized Experience Replay . 29
4.5.6 Double Q-learning . 30
4.5.7 Freeze Interval . 31
4.5.8 Experience Replay Memory Size . 32
4.5.9 State Representations . 33

4.6 Fine-tuned Deep Q-learning Agent . 36

5 Multi-Agent Reinforcement Learning 38
5.1 Coordination in Multi-Agent Systems . 38
5.2 Coordination Graphs . 38
5.3 Coordination Algorithms . 39

5.3.1 Variable Elimination . 39
5.3.2 Max-Plus . 39

5.4 Sequential Decision Making with Coordination . 39

3

5.4.1 Transfer Planning . 40

6 Deep Multi-Agent Reinforcement Learning for Coordination in Traffic Light Control 42
6.1 Multi-Agent Scenarios . 42
6.2 Transfer Planning . 42

7 Multi-Agent Experiments 45
7.1 Baseline . 45
7.2 Two-Agent Scenario . 45
7.3 Three-Agent Scenario . 46
7.4 Four-Agent Scenario . 46

8 Related work 48
8.1 Deep Reinforcement Learning and Coordination . 48
8.2 Traffic Light Control . 48

9 Discussion 49

10 Conclusion 51
10.1 Future work . 51

4

1 Introduction

Recently, Artificial Intelligence has reached some important milestones, most notably the defeat of Lee Sedol,
the world champion of Go, by a machine. The underlying algorithms used to achieve this event combine the
fields of deep learning and reinforcement learning. In the last ten years, deep learning, a sub-field of machine
learning that uses complex models to approximate functions, has seen great advances [23, 46] and as a result,
an increase in popularity and research directions. The use of deep learning approaches in reinforcement learning
- deep reinforcement learning - has resulted in strong decision making agents, capable of outperforming human
beings [31, 43].

Since the results of applying deep reinforcement learning to games are impressive, a logical next step is to
use these algorithms to solve real-world problems. For example, the cost of traffic congestion in the EU is
large, estimated to be 1% of the EU’s GDP [6], and good solutions for traffic light control may reduce traffic
congestion, saving time and money and reducing pollution.

In this thesis, an agent is an entity capable of making decisions based on its observations of the environment.
Systems where multiple of these agents cooperate to reach a common goal are cooperative multi-agent systems.
Networks of traffic light intersections can be represented as cooperative multi-agent systems, where each traffic
light is an agent, and the agents coordinate to jointly optimize traffic throughput. By using reinforcement
learning methods, a traffic control system can be developed wherein traffic light agents cooperate to optimize
traffic flow, while simultaneously improving over time. While earlier work has researched the combination of
more traditional reinforcement learning methods with coordination algorithms [60, 50, 24], these approaches
require manual feature extraction and simplifying assumptions, potentially losing vital information that a deep
learning approach can learn to utilize. This makes traffic light control a good application to test the embedding
of deep reinforcement learning into coordination algorithms.

The goal of this thesis is, on one hand the extension of earlier work on applying deep reinforcement learn-
ing algorithms to traffic light control [38], and on the other the embedding of deep reinforcement learning into
existing multi-agent coordination algorithms.

1.1 Research Questions and Contributions

Following earlier work [38], top-down images of the current traffic situation are used as input for the deep
reinforcement learning algorithm. Thus, the next research question:

Q1. Can a deep reinforcement learning agent learn to manage traffic based only on top-down images of traffic
situations? Moreover, how do different hyperparameter settings - such as the network architecture, or the
database size - influence the algorithm’s behavior on the traffic light control problem?

In traffic light control, an agent’s goal could be to minimize the average travel time of vehicles in the network:
by minimizing travel time, congestion is indirectly discouraged and traffic throughput optimized. However, the
travel time of a vehicle is unknown until it has reached its destination. To circumvent this problem, this thesis
considers the following research question:

Q2. How can a reward function for traffic control be shaped, such that the resulting reinforcement learning
agent minimizes traffic jams, delay and unsafe situations?

To extend existing research on deep reinforcement learning and traffic light control [38], some modifications
to the original deep reinforcement learning algorithm [31] are compared: prioritized experience replay [42] and
deep double Q-learning [55] (see Sections 2.7.1 and 2.7.3 for details on these modifications), resulting in the
following research question:

Q3. How does the use of modifications such as prioritized experience replay and double Q-learning compare to
the use of the unmodified deep reinforcement learning algorithm?

Finally, deep reinforcement learning is embedded in existing coordination algorithms and compared to the
current state of the art of coordination for traffic light control, from where the following research question
arises:

Q4. Can deep reinforcement learning policies be used in cooperation in traffic control, and more importantly,
can the resulting algorithm outperform more traditional approaches to using reinforcement learning in
traffic light control?

5

Thus, the contribution of this thesis is two-fold: one, research on applying deep reinforcement algorithms to
the problem of learning an optimal policy for a traffic light control agent is extended. Two, deep reinforcement
learning is embedded into existing multi-agent coordination algorithms and compared to the current state of
the art, in order to empirically evaluate the feasibility of combining these approaches.

1.2 Outline

Section 2 introduces the necessary background information for deep reinforcement learning, Section 3 outlines
the approach used in the single agent case, and Section 4 presents the results of applying deep reinforcement
learning to single-agent traffic control.

Section 5 introduces the necessary background information for multi-agent coordination between traffic light
agents and Section 6 presents the approach used to combining deep reinforcement learning with coordination
algorithms. Section 7 presents the results of applying deep reinforcement learning to multi-agent coordination.
Section 8 touches on earlier work related to deep reinforcement learning and traffic light control, Section 9
discusses the implications of the presented findings and Section 10 concludes and suggests directions for future
work.

6

2 Deep Reinforcement Learning

This chapter introduces the necessary background knowledge needed for understanding deep reinforcement
learning for single-agent traffic light control.

2.1 Markov Decision Processes

A Markov Decision Process (MDP) is a mathematical framework for optimizing decision-making under uncer-
tainty. It is specified over an environment, where the goal is for an agent to reach some desired state. As such,
the MDP formalizes a set of environmental states, a set of actions for the agent to take, a reward function that
assigns a reward signal to the outcome of taking certain actions in certain states, and a transition function,
that describes the change in the environment as a result of taking a certain action in a certain state. An MDP
satisfies the Markov Property if the transition function depends only on the current state s and the taken action
a. That is, the probability of moving from s to s′ after taking a is dependent only on the current state, such
that [47]:

P (st+1|st, at, rt, st−1, at−1, · · · , r1, s0, a0) = P (st+1|st, at) (1)

Formally, an MDP is a four-tuple < S,A,R, T > where

• S is the space of possible states;

• A is the space of possible actions;

• Rass′ is a reward function specifying the reward r for taking action a in state s and ending up in state s′;

• T ass′ is a transition function specifying the probability of taking action a in state s and ending up in state
s′.

The agent’s goal is to maximize its reward over time, giving slightly more preference to short-term than to
long-term reward. This goal is captured in the return, the discounted cumulative reward over time [47]:

Rt =

∞∑
k=0

γkrt+k+1 (2)

where γ is a discount factor such that 0 < γ ≤ 1, meaning that future rewards are discounted exponentially.

To maximize the return, the agent finds a policy π, a strategy for choosing an action a given a state s. A
deterministic policy is a function that maps a state to an action, whereas a stochastic policy is a distribution
assigning probabilities to actions based on the state, that is, π(s) is a probability distribution over a ∈ A(s),
and π(s, a) is the probability of selecting a in s.

The expected value of the return under a policy π is given by a value function, V π : S → R, which is a
mapping from a state and policy to the expected return of starting in s and following π from there on out [47]:

V π(s) = Eπ
[
Rt|st = s

]
(3)

= Eπ
[∞∑
k=0

γkrt+k+1|st = s
]

(4)

An important attribute of (4) is that it can be rewritten to be recursively defined [47], which allows for dynamic
programming [2] algorithms to efficiently estimate the value of a policy:

V π(s) = Eπ
[∞∑
k=0

γkrt+k+1|st = s
]

(5)

=
∑
a∈A

π(s, a)
∑
s′∈S
T ass′

[
Rass′ + γV π(s′)

]
(6)

To choose the optimal action in a state, an agent needs a function similar to (4) but defined over states and
actions. This is the Q-value function Q : S ×A → R, which estimates the expected value of taking action a in
state s and following π afterwards [47]:

Qπ(s, a) = Eπ
[
Rt|st = s, at = a

]
(7)

= Eπ
[∞∑
k=0

γkrt+k+1|st = s, at = a
]

(8)

7

Using (6), (8) can be rewritten in terms of the value function:

Qπ(s, a) = Eπ
[∞∑
k=0

γkrt+k+1|st = s, at = a
]

(9)

=
∑
s′∈S
T ass′

[
Rass′ + γV π(s′)

]
(10)

If T and R are known, the optimal policy can be found by planning, using dynamic programming methods
that exploit the recursive definitions of the value function. An example of a planning algorithm that finds an
optimal policy is Value Iteration, pseudo code for which is presented in Algorithm 1. Value Iteration iteratively
updates the value function by updating each Q-value, and then uses the maximizing Q-value to update the
value function. Since these two functions are dependent on each other, Value Iteration converges to the optimal
policy [47].

Algorithm 1 Value Iteration

1: Initialize V0(s) randomly for all s ∈ S, i=1,
2: while |Vi(s)− Vi−1(s)| > ε,∀s ∈ S do
3: for s ∈ S do
4: for a ∈ A do
5: Qi(s, a) =

∑
s′∈S T ass′

[
Rass′ + γVi−1(s′)

]
6: end for
7: Vi(s) = max

a
Qi(s, a)

8: end for
9: end while

However, in many cases the environmental dynamics T and R are not known upfront. In those cases the agent
needs to estimate the value of taking an action in a state without using knowledge about the transition proba-
bilities and reward function. For these cases, reinforcement learning algorithms are suitable. In reinforcement
learning, an agent learns a mapping from states to actions from interacting with the environment and receiving
feedback for taking actions in states.

One type of reinforcement learning algorithm is model-based reinforcement learning, where the agent sam-
ples from the environment to estimate T and R, and then uses planning algorithms to find an optimal policy.
Another type of reinforcement learning algorithm is model-free reinforcement learning, where the agent skips T
and R altogether and directly estimates the Q-function from experience. In both cases, it is important for an
agent to balance exploitation - taking greedy actions, which are those that maximize the current estimate of
Q(s, a) - and exploration - taking suboptimal actions to be able to sample from new parts of the search space.

2.1.1 Partial Observability

In some cases the environmental state is not fully observable, and while the transition from s to s′ given a is
Markov, the agent cannot observe s, but only a proxy for the state, an observation o. For example, a robot
that faces a blind wall does not know which part of the wall it is looking at without knowing the route it took
so far [15].

In these cases, the agent needs knowledge of the history to reason about the state it’s in. When the envi-
ronment is partially observable, the problem can be defined as a Partially Observable Markov Decision Process
(POMDP). POMDPs can be solved by defining a Belief MDP, which defines a probability distribution over the
POMDP state, the Belief State. This allows the agent to make decisions without full observability, but results
in an intractable problem - the Belief State space is continuous (as it is a probability distribution) and so it
cannot be solved by tabular algorithms such as Value Iteration. A much simpler solution, that is not always
available, is to prepend (part of) the history to the state. By doing so, the history is added to the state, so that
full observability is re-introduced to the state space. As a result, the problem reverts back to the much easier
MDP problem.

2.2 Tabular Q-learning

Q-learning [59] is a model-free reinforcement learning algorithm. That is, it does not build its own model of the
environment’s transition and reward functions, but rather directly estimates the value of taking an action a in

8

state s, the so-called Q-value of the s, a-pair, Q(s, a). Specifically, Q-learning is an off-policy algorithm, which
is a class of algorithms that uses a different policy for estimating Q-values than for action-selection. That is,
Q-learning updates the Q-values of the current s, a-pair using the greedy policy to estimate the Q-value of the
optimal policy of the next s, a-pair.

In traditional Q-learning, the agent employs a lookup table of s, a-pairs and iteratively updates the Q-value
estimates using

Qt+1(s, a) = Qt(s, a) + α
[
rt + γ

[
max
a′

Qt(st+1, a
′; θt)

]
−Qt(s, a)

]
(11)

In words, the difference between the current estimate of the s, a-pair, and the actual value of the s, a-pair.
However, since the true value of the s, a-pair is not known upfront, the agent instead uses the current reward
signal and the maximizing Q-value of the next state as a proxy for the true value. For the complete algorithm,
see Algorithm 2. This is called tabular Q-learning, and it has the nice property that it converges given infinite
samples. That is, under specific circumstance, the Bellman equation is a contraction mapping with respect to
the infinity norm (for details, see e.g. [56]).

Algorithm 2 Tabular Q-learning

1: Initialize Q(s, a) randomly for all s ∈ S, a ∈ A, i=1,
2: for each episode do
3: Initialize s, a
4: for each step t in episode do
5: a = π(s) // Select a using policy based on current Q, e.g. ε-greedy
6: Take action a
7: Receive reward r, observe new state s′.
8: Qt+1(s, a) = Qt(s, a) + α[r + γ max

a′
Qt(s

′, a′)−Qt(s, a)] Set s = s′

9: end for
10: end for

Q-learning can be contrasted with SARSA [39], an on-policy algorithm that updates the Q-values of the current
s, a-pair using the estimation of the Q-value for the next s, a-pair of the current policy. SARSA and Q-learning
would be the same algorithm if SARSA would use a greedy policy for interacting with the environment. In
practice, this is not the case, as a purely greedy policy does not balance exploration and exploitation (since by
definition it only exploits). It is imperative to properly balance these two, since without exploration the agent
cannot make proper estimates of Q-values, but without exploitation, it cannot use the knowledge it has learned.

2.3 Q-learning with Function Approximation

While tabular Q-learning works fine in small domains, many real-world problems have very large or continuous
S and A, and thus, do not allow enumeration over s, a-pairs. A solution to the problem of continuous S is
function approximation, where supervised machine learning algorithms are used to approximate the Q-function.
In that case, the Q-value is no longer an entry in an |S| × |A| table, but a function parametrized by learned
weights θ. These weights can be updated using gradient descent methods, minimizing the mean squared error
between the current estimate of Q(s, a) and the target, which is defined as the true Q-value of the s, a-pair
under policy π, Qπ(s, a).

The gradient descent update can be derived by taking the derivative of the mean squared error (MSE):

MSE(θ) =
∑
s∈S

P (s)
[
Qπ(s, a; θ∗)−Qt(s, a; θt)

]2
(12)

where P (s) is the sampling distribution, or the probability of visiting state s under policy π.

The derivative is then

∂

∂θt
MSE(θ) = 2

[
Qπ(s, a; θ∗)−Qt(s, a; θt)

] ∂
∂θt

Qt(s, a; θt) (13)

Since the targets are not directly observable, a proxy is used for the targets, given by the reward in the current
time step, and a discounted estimate of the next state’s best Q-value using the current Q-function approximation,

9

Qt:

Qπ(s, a; θ∗) ≈ rt + γ
[

max
a′

Qt(st+1, a
′; θt)

]
(14)

Since the Q-value is an expected discounted cumulative reward of taking action a in state s and following policy
π afterwards, (14) is an optimistic estimate of the Q-value at time step t.

With the Q-function approximation represented as a function with learnable parameters, a regular supervised
learning method can be used to approximate the true Q-function Qπ. This is the essence of Q-learning with
function approximation.

2.4 Convergence Issues

While using global approximations for Q-values can potentially speed up learning by generalization [37], the
original convergence guarantees of Q-learning no longer hold; divergence and/or oscillation may be caused by
at least the three problems described in Sections 2.4.1 - 2.4.3 (and perhaps other, not yet identified issues).
However, some convergence guarantees have been found for reinforcement learning with function approximation,
as described in Section 2.4.4.

2.4.1 High Correlation Between Samples

In traditional machine learning problems, there is often an assumption of independently and identically dis-
tributed (i.i.d.) data. That is, each data point is drawn from the same probability distribution as the others,
and all data points are mutually independent [4]. However, in decision-making under uncertainty, consequently
sampled data points are heavily correlated: (st, at) strongly influences the probability of (st+1, at+1).

2.4.2 Non-stationary Data Distribution

Moreover, as Qt is iteratively updated with each new sample, the sampling distribution is changed as well -
since Qt determines which actions are chosen and thus, which sequence is followed - so that a data point (a
transition of the form s, a, r, s′) at time step 0 is sampled from a very different distribution than e.g. a data
point sampled at time step 1000, because the Q-function changes, and as a result, so does the action-selection
function. As a result, the data points are not drawn from the same distribution, which means that not only are
the samples not independent, they are also not identically distributed.

2.4.3 Moving Targets

Additionally, in going from tabular Q-learning to function approximation, the model shifts from a tabular
representation - one where each s, a-pair has a local entry - to a global representation, where each s, a-pair
is evaluated by an approximator that is updated globally. Since in function approximation the weights are
updated globally, earlier progress on one s, a-pair can be reverted by updating after sampling another s′, a′-pair
[37]. Moreover, consider that in Q-learning, the targets move as the agent learns to map s, a-pairs to Q-values,
as each time an s, a-pair is sampled, its Q-value changes. However, in function approximation, as the estimation
of the current s, a-pair changes, so does the optimistic estimate of the next s′, a′-pair: a result of updating Qt
globally is that both estimates are changed when the Q-function is updated. As a result, the moving targets
become problematic: updating the current s, a-pair may result in a large shift in its target value, which is
dependent on the Q-value for the next s, a-pair. Thus, while Qt(s, a) is updated to move closer to its target,
rt + γ

[
Qt(st+1, a)

]
, the latter shifts because of the update, and so the system may destabilize. To see why this

is the case, consider updating a Q-learning agent with a function approximator based on sample transition tn.
The Q-network weights θ are updated, and as a result, the Q-value of tn+1 - which is part of the label - changes
as well. Then, Qθ is updated based on tn+1 and as a result, the Q-values for tn could shift back. This can result
in oscillations, or - if the targets do not shift back but further and further away, divergence - which could be
prevented by keeping the Q-values for tn+1 fixed for a longer period of time.

2.4.4 Convergence Conditions for Reinforcement Learning with Function Approximation

Despite these convergence issues when going from tabular reinforcement learning to using function approxima-
tors, there are cases in which reinforcement learning with function approximation converges with probability
1. Earlier work on convergence in reinforcement learning has established convergence conditions for on-policy

10

x1

x2

x3

h1

h2

h3

h4

h5

y1

y2

y3

Input Hidden Output

Figure 2.1: Example of a simple neural network architecture with one hidden layer

reinforcement learning with linear function approximators [53] [29] [36]. However, none of these results are ap-
plicable to deep Q-learning, since a) Q-learning is an off-policy algorithm and b) neural networks are non-linear
approximators.

2.5 Deep Learning

Recent successes with deep neural networks have led to the field of deep learning. Deep learning is an area of
machine learning that focuses on neural networks with many layers and methods of making these models faster
to train and more reliable in terms of convergence.

2.5.1 Neural Networks

A neural network [4] is a machine learning model parameterized by a set of parameters θ that maps an M -
dimensional input vector, ~x through a series of hidden layers and activations, to a K-dimensional output vector,
~y (see Figure 2.1). Specifically, a neural network consists of interconnected layers, where each layer computes a
linear mapping between the input x and its weights w, adding a bias term b and mapping the result through a
non-linear activation function - needed to introduce non-linearity into the model - e.g. a rectified linear unit.
For example, mapping input vector ~x through one hidden layer with weights W0 ∈ θ, bias term b0 ∈ θ and
non-linearity h0 results in the following equation:

~x′ = h0(W0~x+ b0) (15)

The output ~x′ can be used as input to the next layer, with e.g. weights W1 ∈ θ, bias b1 ∈ θ and non-linearity
h1:

~x′′ = h1(W1h0(W0~x+ b0) + b1) (16)

And so on. As the network grows deeper, the model can approximate more complex functions, but it also
becomes harder to train. For that reason, much of the field of deep learning is dedicated to solving problems
such as finding more reliable and faster methods of training neural networks and escaping local minima.

2.5.2 Optimization Algorithms

To train machine learning models, some form of gradient descent is necessary. First, define an objective function
L, that quantifies the error between the output of the model and the true value of the data point. In gradient
descent optimization, the objective function - and thus the error - is minimized by updating the parameters of
the model in the direction of the negative of the gradient [4].

11

Stochastic Gradient Descent In batch gradient descent (GD) [4], L is minimized with respect to the model
parameters θ by changing the parameters with small steps in the direction of the gradient of L. Thus, the update
for θ is

θ(t+1) = θ(t) − α
N∑
i=1

∇L(xi; θ
(t)) (17)

where N is the size of the data set and α is the learning rate.

In stochastic gradient descent (SGD), updates are not performed over the entire data set, but based on randomly
sampled data points xi ∼ U(x0 · · ·xN):

θ(t+1) = θ(t) − α∇L(xi; θ
(t)) (18)

Because of the randomness in data point sampling, SGD is less likely to get stuck in local minima than batch
gradient descent, and because of the iterative updates it can be used as an on-line algorithm. However, SGD
can still get stuck in local minima and saddle points.

Deep neural networks are difficult to train, and as such, new optimization methods have been proposed that con-
verge more reliably than standard stochastic gradient descent. Two of these optimization methods - RMSProp
and ADAM - are discussed here. Since both are adaptations of the Adagrad [8] optimizer, this is discussed first.

Adagrad Adagrad [8] adaptively updates parameters based on a sum of squared gradients per parameter. It
then uses this value to normalize the learning rate before the update. Specifically, for parameter j:

G
(t+1)
j = G

(t)
j +

(
∂L
∂θ

(t)
j

)2

(19)

θ
(t+1)
j = θ

(t)
j −

α

(G
(t+1)
j + ε)

· ∂Lθ
∂θ

(t)
j

(20)

where ε is a small constant to prevent division by zero.

Thus, the learning rate for each parameter is set adaptively, based on the past updates. If past gradients
for parameter j were large, the learning rate for j is small. On the other hand, if past gradients for j have been
small/sparse, the learning rate for j is large. By dividing the learning rate by the sum of past square gradients,
Adagrad removes the need for extensive learning rate tuning.

RMSProp Adagrad solved the problem of adaptively tuning the learning rate per parameter, but by dividing
the learning rate by the sum of squared gradients, the learning rate diminishes too agressively as time passes,
since the sum keeps growing.

RMSProp [52] solves this problem by defining an exponentially decaying average of squared gradients instead:

G
(t+1)
j = γG

(t)
j + (1− γ)

(
∂L
∂θ

(t)
j

)2

(21)

where originally γ = 0.9. The parameter update in RMSProp is also performed using (20).

Momentum Momentum [45] is an addition to the optimization step that functions by increasing the strength
of updates in directions that consistently lead to improvement. It does this by storing a variable v, the so-called
velocity :

v(t+1) = µ · v(t) − α∇Lθ (22)

θ(t+1) = θ(t) + v(t+1) (23)

where µ is the momentum coefficient.

By using momentum, learning speeds up when gradients are following the loss curve down a slope.

12

ADAM ADAM (Adaptive Moment Estimation) [18] is similar to AdaGrad and RMSProp and combines these
methods with its own version of momentum. Specifically, ADAM stores both a decaying average of squared
gradients and a decaying average of past gradients:

m(t+1) = β1 ·m(t) + (1− β1) · ∇Lθ (24)

v(t+1) = β2 · v(t) + (1− β2) · ∇Lθ2 (25)

where β1 and β2 are hyperparameters. However, these values are estimates of the first-order moment (the
mean), mt and the second-order moment (the variance), vt, respectively. Thus, in ADAM, the v variable is not
the momentum-velocity but an estimate of the variance.

To correct for the bias caused by initializing these vectors as zero-vectors, a bias-correction step is performed:

m̂(t+1) =
m(t)

(1− βt1)
(26)

v̂(t+1) =
v(t)

(1− βt2)
(27)

The final update rule is then similar to those discussed above:

θ(t+1) = θ(t) − α√
v̂(t+1) + ε

· m̂(t+1) (28)

where ε, again, is a constant to prevent division by zero.

Backpropagation Neural networks can be trained using gradient descent methods - by minimizing the error
function with respect to the parameters. To do so, the gradient of the error function is computed.

Backpropagation is a method for passing the error in the output layer back through the individual nodes
in the neural network. Since a neural network is essentially a hierarchy of nested functions, the chain rule can
be used to compute the derivative of the error function with respect to the neural network weights.

2.5.3 Batch Normalization

In deep learning, parameter changes in one layer of the neural network affect the resulting input distribution
for all following layers. This phenomenon is referred to as internal covariate shift [14]. Batch normalization [14]
is a method to reduce the severity of internal covariate shift. Batch normalization effectively normalizes the
input to each layer in the network by computing the mean and variance of a mini-batch. Note that mini-batch
statistics are used to approximate the population statistics, to reduce computation time.

Thus, for each feature k in the input vector ~x:

x̂k =
xk − E[xk]√
Var[xk] + ε

(29)

where ε is a constant added for to prevent zero-divisions.

To prevent the loss of expressive power for each layer, two parameters are introduced to ensure that the layer’s
transformation can represent the identity transformation. That is, for each feature k in the input factor ~x the
network learns γk, a scaling parameter1 and βk, a shifting parameter, such that the layer input for feature k,
yk becomes:

yk = γkx̂k + βk (30)

Batch normalization is useful since it speeds up learning, allows larger learning rates and reduces the need for
hyperparameter tuning, especially the learning rate.

2.5.4 Convolutional networks

A convolutional network [25] is a type of neural network architecture that is especially adept at recognizing
patterns in spatial data such as images. A convolutional network has one or more convolutional layers that
consist of a set of filters. These filters output locally filtered areas of the image. That is, each filter is applied
over all parts of the image, but a network can have multiple filters per convolutional layer. The weights of the
filters are learned by backpropagation.

1Not to be confused with the discount factor γ used in reinforcement learning

13

2.6 Deep Reinforcement Learning

Deep reinforcement learning refers to reinforcement learning with (deep) neural networks as function approx-
imators. Reinforcement learning with neural networks enables learning of a large range of decision-theoretic
functions, and results in function approximators that are naturally adept at dealing with continuous and large
state spaces effectively. For example, using convolutional networks to map images to decisions in robot path-
planning removes error-prone and time-consuming manual feature extraction. A notable algorithm is Deep
Q-learning (DQN) [31], which is an adaptation of Q-learning that uses a neural network as a function ap-
proximator. To alleviate the convergence problems discussed in Section 2.4, DQN samples experience from an
experience replay database D and keeps the Q-function for the target s, a-pair fixed for long periods of time.
The pseudo-code for the DQN algorithm can be found in Algorithm 3, and the algorithm is explained in detail
in Sections 2.7.1 to 2.7.2.

Algorithm 3 Single Agent Deep Q-Learning

1: Initialize Q-networks θV and θT with random weights
2: Initialize state s = s0
3: Initialize action a ∼ U(A)
4: Initialize experience replay database D = []
5: Take action a
6: for i=0; i < |D|; i++ do
7: Receive reward r
8: Observe next state s′

9: D.add(< s, a, r, s′ >) // Add transition to experience replay database
10: a ∼ U(A) // Sample random action
11: Take action a
12: end for
13: for i=|D|; i < 1e6; i++ do
14: Interact with the environment:
15: Receive reward r
16: Observe next state s′

17: D.add(< s, a, r, s′ >) // Add transition to experience replay database
18: With probability ε: // Select actions using ε-greedy
19: a ∼ U(A)
20: Otherwise:
21: a = argmax

a
Q(s, a; θV)

22: Take action a
23: Perform updates:
24: (sm, am, rm, s

′
m) ∼ U(D) // Sample mini-batch of transitions from D

25: Update θV using (Q(sm, am)− rm + γ
[

max
a′

Qt(s
′
m, a

′; θT)
]
)2

26: Every M steps:
27: Set θT = θV // Copy value network weights to target network
28: end for

However, as noted in Section 2.4, Q-learning with neural network function approximators suffers from conver-
gence issues, and requires some adaptations to prevent divergence. In practice, the DQN approach has been
shown to converge to great solutions [43, 31] in some cases, but to oscillate in other cases (see [42], Figure 7).
Adaptations that have empirically been shown to be effective in alleviating convergence issues are discussed in
Section 2.7.

2.7 Alleviating Convergence Issues

Several methods have been proposed to solve the problems outlined in Section 2.4: experience replay [26], target
network freezing [31] and double Q-learning [55].

2.7.1 Experience Replay

In experience replay [26, 37, 31] the agent stores experience tuples (s, a, r, s′) in a replay memory D. One version
stores the last N transitions in a sliding window database [31], while another stores all the experience tuples [37].

14

On every update step, the agent samples a mini-batch of experience out of D uniformly and uses this mini-batch
to update the weights of the value network Qt. This mechanism breaks the correlations between sequential sam-
ples by randomizing their sampling order. Moreover, samples within a mini-batch are evaluated using the same
Qt [31]. This way, the samples within a mini-batch are scored similarly relative to one another, as opposed
to each sample being evaluated by a different Qt in the algorithm without experience replay. Furthermore,
experiences can, in theory, be sampled multiple times before they leave the memory, such that rare experiences
can potentially be reused more than once, which is especially valuable if some experiences are costly, e.g. driving
a robot off a cliff.

Experience replay can be harmful if environmental mechanisms such as R and T change over time, since
older experiences can then be wrong [26]. Additionally, in experience replay, experience tuples are sampled
from D uniformly. Because of this uniform sampling, common experience tuples are sampled more often, since
they appear in D more often. On the other hand, rare - and potentially high-information - experiences are much
less likely to be resampled than common experiences. In short, uniform sampling from D does not efficiently
use the stored experiences.

Prioritized Experience Replay A solution to the problems introduced by uniform sampling in experience
replay is to sample experiences based on their temporal difference error (TD-error) δ. For a data point i:

δi = Qt(si, ai)− ri + γ max
a′

Qt(s
′
i, a
′) (31)

This is an alternative method of sampling from the replay memory based on the idea of prioritized sweeping
[33], and is aptly named prioritized experience replay [42].

However, rather than using a greedy approach where the experiences with the highest TD-error are deter-
ministically chosen - which is sensitive to outliers, i.e. anomalous data samples caused by noise in the environ-
ment - prioritized experience replay computes a sampling probability for every experience i using a Boltzmann
distribution:

P (i) =
pαi∑
k p

α
k

(32)

where the α parameter is the temperature, used to balance between completely greedy prioritization (α = 1)
and uniform sampling (α = 0). Value pi is computed according to the proportional method (see (33)) or the
rank-based method (see (34)).

The proportional method computes pi as follows:

pi = |δi|+ ε (33)

where ε is a small, positive number to ensure some probability for experiences with δi = 0.

The rank-based method computes pi as follows:

pi =
1

rank(i)
(34)

where rank(i) is the rank of experience i when the experience replay memory is sorted according to δi.

Rank-based prioritization is more robust to large differences in δi [42], since anomalously large TD-errors
do not get an extremely large part of the probability space, but the probability based on their rank, which is
capped.

Replay Memory Composition Earlier work [7] reports an increase in Q-function stability when employing
a different replay memory structure: instead of a simple sliding window, the first half of the replay memory is
reserved for old experiences. That is, only the second half of the database is overwritten with new experience.
The idea behind this approach is that older, exploratory experiences are important to revisit so that structure
learned from early experience is not overwritten. The overwriting of earlier training by new experience - and
consequent forgetting of important knowledge - is known as catastrophic forgetting [27].

2.7.2 Freezing Target Network

A solution to the problem of moving targets (Section 2.4.3) is to have a separate value network Qt(s, a; θVt) to
evaluate the value of the current s, a-pair, and target network Qt(s, a; θTt) to evaluate the targets

15

rt + γ
[

max
a′

Qt(s
′, a′; θTt)

]
[31]. Every M steps, the weights of the action network are copied into the target

network, by setting

θTt = θVt (35)

Whereas the weights of the value network, θVt , are updated on every training step. By only updating the target
network every M steps, the labels to update to are fixed for a period of M time steps, instead of changing
on every time step. Recall that updates made on the basis of transition tn+1 can undo updates made on the
basis of tn. Moreover, by updating the Q-function to shift Q(st, at) closer to rt + γ max

a′
[Q(st+1, a

′)], the value

of Q(st+1, a
′) changes as well. Thus, by decoupling the Q-functions for Q(st, at) and Q(st+1, a

′) and keeping
the latter fixed for a period of time, Q(st, at) can be updated without changing the targets. In theory, waiting
longer between target network updates would increase stability, but can lead to longer convergence times since
the updates are not being made in the optimal direction as long as the targets are suboptimal.

2.7.3 Double Q-learning

In Q-learning, the Q-value is computed by 1) finding the maximizing action for the next state according to the
current Q-function and 2) computing the Q-value of the next state and this maximizing action. However, since
both computations are performed using the same Q-network estimation, this can result in overestimations. For
example, if the true Q-values for all actions are the same, but the Q-network results in noisy estimations, since
the max-operator is used, the estimated Q-value will be an overestimation due to the addition of noise. Earlier
work has derived both an upper bound [51] and a lower bound [55] on these overestimations.

Double Q-learning alleviates this overestimation by decoupling the maximization and the evaluation, by us-
ing different Q-networks for both operators [54]. In DQN, this results in Deep Double Q-learning (DDQN) [55].
DDQN is very similar to the original DQN algorithm, with the exception of the decoupling of the operators
mentioned above. The only difference is the update of the value network, where originally, the targets (denoted
as yt) were computed as

yt = rt + γ
[

max
a′

Qt(st+1, a
′; θt)

]
(36)

but which can be rewritten to a decoupled version as

yt = rt + γQ(st+1, argmax
a

Q(st+1, a; θt); θt) (37)

That is, the maximizing action is found first and then the corresponding Q-value is computed, instead of directly
maximizing the Q-values with respect to the actions.
For the original DQN algorithm, (36) and (37) compute the exact same value, but in DDQN, the maximization
and the Q-value computation (evaluation) use different Q-networks, which results in (38).

yt = rt + γQ(st+1, argmax
a

Q(st+1, a; θVt); θTt) (38)

where θVt and θTt are the value network parameters and target network parameters used in the original DQN al-
gorithm. DDQN is otherwise exactly the same as DQN, and the target network is still updated by intermittently
cloning the value network parameters. Despite these great similarities, DDQN’s robustness to overestimation
has empirically been shown to outperform the original DQN algorithm on the Atari benchmark [55].

16

3 Deep Reinforcement Learning for Traffic Light Control

This section outlines the approach used for single-agent traffic control with deep reinforcement learning. The
approach is based partly on earlier work [38], which is an application of the DQN algorithm [31] to single-agent
traffic control, using a single matrix of car positions. Here, that work is extended in multiple ways, considering
different state space representations and algorithm modifications.

3.1 Traffic Light Control

In traffic light control, the agent is a traffic light intersection within a traffic network, whose goal is to optimize
the throughput of vehicles through the traffic network as a whole, while minimizing traffic jams and collisions.
For an illustration, see Figure 3.1.

Experiments are run in the open source traffic simulator SUMO [21]. SUMO uses a car-following, (mostly)
collision-free model based on the Krauß car-following model [22], which makes vehicles keep a safe distance
from the car ahead, such that there is enough time to brake in case of emergency stops [16]. Due to this
assumption of being a collision-free model, SUMO deals with collisions by teleporting colliding vehicles to a
different place in the network.

As such, there is no direct way to penalize e.g. collisions in SUMO, aside from penalizing teleports. How-
ever, teleports are also SUMO’s solution in case a vehicle has been stuck in one place for too long. It is,
however, possible to penalize based on, for example, the delay of vehicles, the time they spend not moving, and
so forth. From here on, one simulated second in SUMO equals one time step. Simulations are allowed to run
until they finish, or until 10, 000 time steps have passed.

Figure 3.1: A traffic light agent within a larger traffic network. The colored circles represent the traffic light
setting for each lane.

3.2 State Representations

The representation of the current state should be chosen such that a) the agent has all the information it needs
to make a good decision and b) there is little, if any, superfluous/unneeded information. The latter is important,
since unneeded information results in extra training time - the agent would need to learn that this informa-
tion is irrelevant, and a larger state space results in slower learning by increasing the computation time per step.

A traffic light agent is trained using the DQN algorithm (hereafter named ‘DQN agent’) using a matrix of
vehicle positions as a state [38], similar to how earlier work uses raw pixel images as video game states [31].
Details about the state space representation can be found in Section 3.2.2. To compare, a baseline agent is
trained with a linear function approximator (hereafter named ‘linear agent’), but since linear regression is not
well-equipped for non-linear information, a separate feature vector with manually defined features is used for a
fair comparison. The details of the state space representation for the linear agent can be found in Section 3.2.1.

3.2.1 Linear Agent

The linear agent uses a feature vector of basis functions φ(s), containing information about the state. The
feature vector is built up per lane that the agent controls, and contains a set of features per lane: first, the sum

17

of the waiting times (i.e. the number of time steps that a vehicle has not moved) for all vehicles on the lane,
because information over the wait time of vehicles gives us an indication of e.g. jams on a lane. For similar
reasons, the sum of vehicle delay (the difference between the maximum allowed speed and the vehicle’s actual
speed) per lane is included. Next, the number of vehicles on the lane is added, as this gives an indication of e.g.
the severity of the summed delay (many waiting vehicles may be worse than just one). Moreover, the number
of halted (i.e. with speed of zero) vehicles on the lane is included, as well as the average speed of all vehicles
on the lane - since just moving incredibly slowly may be worse than not moving at all (at least, for human
drivers). Furthermore, the average acceleration of vehicles on the lane is included, as this gives an indication of
how smooth the traffic moves, and finally, the number of emergency stops made on the last time step (over all
lanes) is added, as emergency stops cause dangerous situations.

Earlier work [50] uses one of four representations: a) a vector of partitioned vehicle counts per lane, b) a
boolean vector of evenly partitioned distances to the intersection (a one indicating the occupation of each par-
tition), c) a boolean vector of unevenly partitioned distances to the intersection (again, a one indicating the
occupation of each partition) or d) a vector of partitioned vehicle counts per lane, combined with traffic light
state information. Compared to this work, the feature vector of the linear agent in this thesis has access to
more information.

Since a linear function approximator cannot represent non-linear dependencies, the feature vector is extended
to a combination of the state feature vector and a one-hot vector ~a specifying the last chosen action. In this
case, the one-hot vector is a vector with as many entries as there are actions, that is, zero everywhere except on
the index of the last chosen action, which is one. For example, if the second action out of four possible actions
was taken:

~a =

0
1
0
0

 (39)

This results in a complete state, action representation φ′(s, a) where the state representation is repeated |A|
times, and set to zero unless it is at the repetition corresponding to the index of the last taken action:

φ′(s, a) =

a0φ0(s)
a0φ1(s)

...
anφm−1(s)
anφm(s)

 (40)

Thus, each action has its own state feature subvector that is only active (i.e. non-zero) if the action is active.
By doing this, actions can be related to state representations in a non-linear way.

3.2.2 Deep Q-learning Agent

The DQN agent uses an image as state representation. In the most basic version, this image is an n×m binary
matrix, the position matrix, where a one indicates the presence of a vehicle on a location, and a zero the absence
of a vehicle on that location. The locations are computed by discretizing the continuous space of car locations
into an n×m matrix. An artificial example of vehicle positions and a corresponding (6× 6) position matrix is
presented in Figure 3.2.

The matrix used in this approach includes current traffic light settings as floats between 0 and 1 (see Ta-
ble 2), placed on the corresponding traffic light’s location within the binary position matrix. These values were
chosen to be a) non-zero (as a zero indicates an empty position) b) have the same step size and c) be between
0 and 1. While the specific values are arbitrary, they are included for the sake of reproducibility. A more
straightforward option would have been to include these as binary features, such as whether or not each light
is green, red, and so forth, but adding matrices to the state representation increases memory and computation
demands.

The size of n and m are parameters that can be set; higher n and m result in a more fine-grained, higher-
information matrix, but are also more demanding computationally and memory-wise.

The simple, single-frame position matrix does not necessarily contain enough information to compute the
optimal action - for one, it lacks information on car speeds.

18

(a) Example positions of vehicles on lanes controlled by
traffic light agent.

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 1
0 0 0 1 0 0
0 0 0 1 0 0

(b) Example 6 × 6 position matrix of corresponding to the
vehicle locations in 3.2a.

Figure 3.2: Example vehicle positions and corresponding binary position matrix.

Multiple Position Matrices The problem of only having car locations may be alleviated by appending
position matrices for previous time steps, similar to how earlier research attempts to turn a POMDP into an
MDP by including previous game frames2 [31] . Each additional position matrix results in implicitly adding
another order derivative of the position matrix with respect to time (see Table 1).

Frames Information Derivative w.r.t. position
1 Position 0th
2 Speed 1st
3 Acceleration 2nd
4 Jerk 3rd
5 Jounce 4th

Table 1: Number of frames, versus the added information and which order derivative with respect to the car
positions it entails.

At least the first three information types are sensible intuitively: after position, speed is useful to differentiate
between a jam and a queue of moving cars. Acceleration is needed to prevent emergency stops - these occur in
SUMO when a vehicle’s acceleration is less than −4.5 m/s2. Jerk - the change in acceleration over time - and
jounce - the change in jerk over time - are harder to interpret in the context of traffic control.

Value Matrices Instead of adding frames to implicitly add information about speed and acceleration and
having the agent learn their relation to the actions and rewards, it may be possible to save training time by
directly adding matrices containing vehicle speeds and accelerations to the input matrix. In that case, the input
layers are as follows:

1. A binary matrix where each vehicle’s location at time t is represented as 1, the rest is 0

2. A matrix where each vehicle v’s position is represented as a percentage of the maximum allowed speed,
the relative speed srelv,t . This is computed by dividing the speed of vehicle v on time step t by the maximum

allowed speed on the vehicle’s lane l: srelv,t =
sv,t

max(sl)

3. A matrix where each vehicle’s position is represented as the acceleration av,t with regards to the relative
speed, av,t = srelv,t − srelv,t−1

4. A matrix where each position is zero, except those of the halting lines of each stop light, where light values
from Table 2 are used. These values were chosen to be a) non-zero, b) have the same step size and c) be
between 0 and 1. While the specific values are arbitrary, they are included for the sake of reproducibility.

2An approach that works for some games, but not all of them - even with the added game frames the agent cannot solve
Montezuma’s revenge

19

State Representation Red Value Yellow Value Green Value
Linear 0.333 0.666 0.999
Frames 0.2 0.5 0.8
Values 0.2 0.6 1.0

Table 2: State representation values for different light colors.

3.2.3 Yellow Times

The yellow time Yt of a traffic light is the time that a stop light is yellow when going from green to red. The
yellow time gives vehicles time to slow down before a red light. Since SUMO is a car-following, mostly collision-
free model, it is difficult to devise a reward signal to train the agent to select yellow times to prevent collisions.
As such, the yellow time is set with a default value, and not learned by the agent. Thus, whenever an agent
takes an action that requires switching at least one of the lights from green to red, that light turns to yellow
for Yt seconds. In this thesis, a yellow time of one second is used3. If the state representation consists of a
single position matrix that includes light configurations, that means that the state is partially observable for
any yellow time Yt > 1. Adding position matrices from earlier time steps allows longer yellow times while still
maintaining full observability. However, if only a single position matrix is used with a yellow time of e.g. four
seconds, the state sequence is a chain such as in Figure 3.3, but to the agent it is represented as the chain in
Figure 3.4. That is, if the light goes from green to red, it is yellow for four seconds first. But since the agent
can only observe the current traffic light configuration, it only observes that a yellow light goes to green in 1

4 of
cases, and to yellow in 3

4 of cases. Thus, to an agent with only a single position matrix as state, stochasticity
appears that is not there in reality.

G Y0 Y1 Y2 Y3 R
p = 1 p = 1 p = 1 p = 1 p = 1

Figure 3.3: Chain of states for a yellow time of four seconds.

G Y R
p = 1

p = 3
4

p = 1
4

Figure 3.4: Chain of states for a yellow time of four seconds, as observed by an agent that only receives the
most recent position matrix with traffic light configurations as the state.

To alleviate this problem, the last few traffic light configurations can be appended to the state, such that the
state contains all traffic light configurations from t−Yt to t, where Yt is the yellow time as discussed in Section
3.2.3.

Yellow Times in Linear Representation In the vector representation of the state that is used by the linear
agent, the traffic light values are appended (as floats) to the feature vector. These values can be found in Table
2 and have been chosen such that the increase in values between lights was constant.

Yellow Times in Position Matrices Representation In the representation where each position matrix
is a binary matrix with vehicle positions on a time step, the current light configuration is included within the
original binary matrix frame. That is, each time step’s position matrix now also includes traffic light values on
the positions of the individual lights. The specific settings can be found in Table 2. These settings were chosen
such that a) each value was non-zero, since 0 represents empty positions, b) no value was 1, which represents a
vehicle.

3 The yellow time may also be set using the recommendations from the traffic engineers handbook [35], using the formula:

Yt = t+
V

2a+ 2Gg
(41)

where Yt is the yellow time in seconds, t is the reaction time of drivers, typically set to 1s, V is the design speed, which in this case
can be taken to be the maximum allowed speed of 70 km/h, a is the deceleration rate, typically ∼ 3 m/s, G is acceleration due to
gravity, 9.81 m/s, and g is the grade of approach, which is 0 for the roads in the examples. So, the yellow time would be ≈ 4.2
seconds for the traffic scenarios in this thesis.

20

Yellow Times in Values Representation In the values matrix representation, where each matrix includes
additional information about each vehicle on its current position, an input layer is added with on the location
of each traffic light its corresponding value according to Table 2, as discussed in Section 3.2.2. These settings
were chosen such that each value was non-zero, since zero represents empty positions.

One matrix is added per second of yellow time, that is, if the yellow time is four seconds, the last four traffic
light matrices are added to the state. In the special case that no static yellow time is employed, a single traffic
light matrix is still used, since the current traffic light configuration is part of the state.

3.3 Action Space

Since SUMO is a (mostly) collision-free model, there is no direct way to punish the agent for collisions due to
illegal traffic light configurations, except for penalizing of teleportations, which can also be caused by traffic
jams. Thus, the action space is restricted to only the set of legal traffic light configurations for the intersection.
A traffic light configuration is illegal if it allows vehicles from intersecting edges to cross at the same time.

Two separate types of action spaces are defined: those with set yellow times and those where the yellow
time has to be learned. One possible way to learn yellow times is by penalizing emergency stops, which in
SUMO are defined as a deceleration of more than 4.5 m/s2. If the agent switches between different traffic light
configurations very fast, this causes vehicles to have to make a lot of sudden stops. By penalizing the agent for
these stops, it may learn to employ yellow times properly on its own.

3.4 Reward Function

Selecting an appropriate reward function for the traffic control problem is not trivial. For one, it depends on
the desired goal for the agent: for example, to minimize traffic jams, a penalty could be applied for each time
step that the agent is not moving. However, this results in frequent switching being optimal: by continually
switching between red and green lights for a lane, vehicles are frequently moving, and never stopping for long.
However, vehicles stopping and starting continuously is not desired behavior.

Another possibility is measuring the delay of each vehicle: the normalized delay of a vehicle is defined as
subtracting the vehicle’s current speed from its maximum allowed speed and dividing by the maximum allowed
speed of the current lane. When the normalized delay is one, the car is at a standstill, and when it is zero, the
car is moving at an optimal speed. However, preliminary experiments showed that situations occur where it
is optimal to never open up a road as long as there are cars moving on the other road. Thus, delay is not an
optimal measure either.

Moreover, a) there should not be many emergency stops and b) the learned policy should not lead to flick-
ering, i.e. changing light states on each time step, since these two things make for unpleasant and unsafe
driving. Furthermore, teleports should be prevented, since they occur in SUMO during either jams or would-be
collisions. This leads to a reward function that is a weighted sum of these five factors, the weights of which are
experimentally set (see Section 4.1).

3.5 Single agent scenario

The scenario used for all single-agent experiments is a simple single intersection as seen in Figure 3.5b. The
roads connected to the junction are all 500 meters long, and have one incoming and one outgoing lane each.

21

(a) Simple single intersection, complete. (b) Simple single intersection, zoomed in.

Figure 3.5

To generate different problem instances, traffic demand data is generated using a uniform distribution over all
traffic directions, with a probability of 0.1 for a vehicle to be generated on each direction on each of 3600 time
steps.

There are four individual stop lights on the intersection, so the legal actions for yellow time Yt > 0 are rgrg
(red, green, red, green) and grgr (green, red, green, red) - see Figure 3.6a and 3.6b. The legal actions for Yt = 0
are rgrg, grgr and ryry (red, yellow, red, yellow) and yryr (yellow, red, yellow, red) - see Figure 3.6a through
3.6d.

(a) rgrg - red, green, red, green (b) grgr - green, red, green, red

(c) ryry - red, yellow, red, yellow (d) yryr - yellow, red, yellow, red

Figure 3.6: Four possible actions (traffic light settings) for the single agent scenario

22

4 Single Agent Experiments

This section describes the experimental details and results of using the DQN algorithm to train a single traffic
light agent.

4.1 Reward Function

As described in Section 3.4, the reward function is essentially a weighted sum of five factors: waiting time,
delay, emergency stops, switches and teleports. To find the best weights, six different weight settings for the
reward function - found in Table 3 - are tested experimentally.

Setting Teleport Wait time Stops Switches Delay
1 0.20 0.20 0.20 0.20 0.20
2 0.20 0.30 0.10 0.10 0.30
3 0.10 0.30 0.20 0.10 0.30
4 0.00 0.25 0.25 0.25 0.25
5 0.10 0.50 0.10 0.10 0.20
6 0.10 0.20 0.10 0.10 0.50

Table 3: Weight settings for six reward function evaluation experiments

These different networks were evaluated after training for 60, 000 steps - after which they all reported relatively
low TD-error and high reward - by testing their greedy policy on the same 16 seeds4 and reporting the average
travel time over all vehicles in the simulation.

The average travel time is used as a measure of how well the reward function works, since minimizing travel
time is a goal, but it is not a suitable reward function since it can only be computed at the end of a simulation,
resulting in sparse and delayed rewards. The average travel time is also not directly expressible in terms of the
reward function components, so that it is a very suitable way to evaluate the reward function. Note that using
the same 16 seeds means that each network had to process the same number of vehicles with the same routes
within a seed. The results of the evaluation can be found in Table 4.

1 2 3 4 5 6
1 415.28 207.34 279.86 325.80 397.38 452.29
2 400.07 320.49 340.21 299.16 435.04 453.48
3 434.11 210.25 214.23 342.46 331.69 397.67
4 464.98 221.42 407.75 266.24 449.96 456.68
5 370.12 262.52 185.25 326.30 339.15 344.53
6 330.12 316.16 226.34 352.66 367.63 465.78
7 436.53 303.18 204.72 386.42 422.86 408.05
8 340.46 318.48 163.15 545.41 419.15 271.80
9 433.13 426.01 405.47 280.47 278.77 258.14
10 453.08 290.60 273.18 289.64 289.38 387.11
11 330.60 257.32 223.69 447.59 383.37 466.93
12 479.32 235.24 216.87 299.16 290.98 470.25
13 413.39 382.59 340.68 374.53 311.72 262.27
14 404.19 262.59 197.15 268.43 483.46 471.82
15 448.75 392.60 309.85 284.04 269.76 191.22
16 461.97 302.74 208.63 244.52 330.78 324.51
Mean 413.51 294.35 262.32 333.30 362.57 380.16
Sum 6616.11 4709.54 4197.05 5332.83 5801.08 6082.53

Table 4: The average travel time (in simulation steps) over all vehicles in a simulation, for each of six reward
function settings and 16 different seeds.

416, since the computing cluster used - LISA - can run 16 scripts in parallel on a single node

23

Since travel time is the shortest for setting three, the reward on time step t is set to be

rt = 0.1× number of teleports

+ 0.1× number of action switches

+ 0.2× number of emergency stops

+ 0.3× sum delay

+ 0.3× sum wait time (42)

4.2 Demand Data

Demand data in SUMO relates to how many vehicles drive over which lanes over time. Each vehicle has a
route, a list of connected edges, which it will drive over to go from a source to a destination. Demand data is
artificially generated for the single-agent intersection using Algorithm 4.

Algorithm 4 Demand Data Generation

1: Define 4 route types: up-down, down-up, left-right, right-left
2: Routes have probability p
3: Initialize ROUTE LIST = []
4: for t = 0 to N do
5: for ROUTE in ROUTE TYPES do
6: Sample ρ ∼ U(0, 1)
7: if p > ρ then ROUTE LIST.append(ROUTE) with depart time t
8: end if
9: end for

10: end for

To generate traffic demand for a simulation, N = 3600 and p = 0.1 are set. Thus, the expected number of
vehicles in the entire single junction simulation is 3600× 4× 0.1 = 1440 cars, with departure times between 0
and 3600.

4.3 Baseline

The performance of the DQN agents is compared to a baseline. Similar to earlier work [38], the DQN agent
is compared to a linear agent. The baseline selected is the linear agent that found the policy with the highest
average reward during training, which is evaluated on 16 simulations. A traffic light agent has a set of controlled
lanes, and these contain the local state. The state, action features φ′(s, a) are as detailed in Section 3.2.1, where
additionally:

• The waiting time per car is clipped to be no larger than 1.5

• The delay per vehicle is measured as a percentage of its maximum allowed speed

• The light state of the agent, represented as an array of values depending on light color, is added to φ′(s, a)

• A bias of 1.0 is added to φ′(s, a)

4.4 Deep Q-learning Agent

The first DQN agent (hereafter the baseline DQN agent) is trained with Algorithm 3 using the settings in Table
5. An ε−greedy policy is used during training, where ε = 1.0 until the replay memory is full, at which point
ε = 0.1.

24

Parameter Value
Replay memory size 50000
Experience sampling Uniform
Learning rate (α) 0.001
Batch size 32
Exploration rate (ε) 0.1
Discount factor (γ) 0.99
Freeze interval 30000
State matrix size 84× 84
State matrix type Binary + light configurations
State matrix frames 1
Gradient momentum 0.95
Squared gradient momentum 0.95

Table 5: Settings for the baseline DQN agent

To evaluate the learned policies for each agent, 16 SUMO simulations are run using the purely greedy policy, at
every 10, 000 training steps (until 1, 000, 000 training steps), such that an approximation of the training curve
is evaluated using the greedy policy. Figure 4.1 plots the performance in terms of average reward (and standard
error) and average vehicle travel time (and standard error) of the baseline DQN agent over time. Standard
error5 is rather low - since the demand data generation settings are the same between evaluations, the problems
the agent is tested on may be rather similar. As a baseline, the best performing version of the linear agent is
plotted as a horizontal line in the same figure.

While the average reward rises overall, average travel time decreases overall, and the learned policy is much
better than the baseline, there is a lot of instability still - there are a lot of sharp decreases in reward (increases
in travel time) even after the network has already found a relatively good policy. This is possibly caused by
so-called catastrophic forgetting [27] - since the Q-function is updated globally, an update that fixes a small
TD-error in one sample can cause the agent to massively underperform on other samples. The graph also shows
that even when there is a dip in performance, the network re-learns the policy rather quickly (in under 10,000
time steps). Thus, these oscillations do not result in complete divergence, but they cause the network to be
unreliable without extensive testing. Moreover, note that Figure 4.1 shows that in general, a low reward results
in higher average travel time and a high reward results in a lower average travel time. Thus, while the used
reward function is not a one-on-one mapping to the average travel time, it is a good proxy: maximizing the
reward minimizes the average travel time.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

80

70

60

50

40

30

20

10

0

R
ew

ar
d

(a) Average reward and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 tr
av

el
 ti

m
e

(b) Average travel time and standard error.

Figure 4.1: Average reward and travel time of the greedy policy for the baseline DQN agent. The single
horizontal line represents the mean and standard error of the best performing linear agent.

4.5 Stability Issues

While earlier work reports great results on the Atari benchmark [31], other findings - that DQN does not
converge reliably for all problems [41, 55, 7] - are replicated for the traffic control problem. Specifically, for the

5The standard error is given by σ√
n

, where σ is the standard deviation of the sample, and n is the sample size.

25

traffic control problem, DQN results in oscillation instead of convergence. The effect of different parameters on
oscillation for the single agent problem is investigated below, and these findings are used a) to train a fine-tuned
version of the original DQN agent, and b) for parameter selection in the multi-agent setting.

4.5.1 Network Architectures

Two different network architectures are tested, ‘NIPS’ (architecture taken from earlier work published at the
NIPS conference [30]) and ‘Nature’ (architecture taken from earlier work published in Nature [31]). The NIPS
architecture is more shallow and simple compared to the Nature architecture - both can be found in Figure 4.2.

The results are presented in Figure 4.3. The NIPS architecture appears slightly more stable, whereas Na-
ture’s reward often drops below the baseline. This difference may be caused by the Nature architecture being
deeper and more complex, and thus needing more training time before convergence, as well as being more likely
to diverge.

NIPS

Input
Batch size × width ×
height × frames

Convolutional layer
16 filters, size 8 × 8,
stride 4× 4

Convolutional layer
32 filters, size 4 × 4,
stride 2× 2

Fully connected layer
256 nodes

Fully connected layer
Output

Rectifier

Rectifier

Rectifier

Nature

Input
Batch size × width ×
height × frames

Convolutional layer
32 filters, size 8 × 8,
stride 4× 4

Convolutional layer
64 filters, size 4 × 4,
stride 2× 2

Convolutional layer
64 filters, size 3 × 3,
stride 1× 1

Fully connected layer
512 nodes

Fully connected layer
Output

Rectifier

Rectifier

Rectifier

Rectifier

Figure 4.2: NIPS and Nature network architectures

26

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

80

70

60

50

40

30

20

10

0
R

ew
ar

d

Architecture: Nips Architecture: Nature

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 tr
av

el
 ti

m
e

Architecture: Nips Architecture: Nature

Figure 4.3: NIPS vs Nature

4.5.2 Learning rate

An obvious contender for improving stability is the learning rate, since high learning rates are associated
with divergence and oscillations in stochastic gradient descent, even in traditional machine learning, due to
overshooting of the local minimum. Especially in the case of oscillations due to catastrophic forgetting, using
smaller learning rates may prevent large oscillations because the agent employs smaller updates. However,
because of ADAM’s adaptive gradients, stability should not be influenced too much by the learning rate. Figure
4.4 shows the average reward per episode during training for high (α = 0.01) and lower (α = 0.00025, from
[31]) learning rates. While the reward for the agent that uses the higher learning rate starts oscillating earlier
than the reward for the lower learning rate (at around 600, 000 training steps versus 800, 000 training steps),
the latter also starts to oscillate near the end of the graph. It is entirely possible that with longer training, the
low learning rate agent would display the same behavior the original agent does. As such, lowering the learning
rate is not a constructive solution, especially when using sophisticated updaters such as ADAM.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

80

70

60

50

40

30

20

10

0

R
ew

ar
d

α=0.001 α=0.00025

(a) Average reward and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 tr
av

el
 ti

m
e

α=0.001 α=0.00025

(b) Average travel time and standard error.

Figure 4.4: Effect of learning rate on reward and travel time.

4.5.3 Optimization Algorithms

We compare three different optimizers: SGD, ADAM [18] and RMSProp [52]. The last two optimizers are very
similar, but ADAM has been shown to outperform RMSProp [18]. The results of this comparison can be found
in Figure 4.5, where the first two graphs compare ADAM to RMSProp, and the second two graphs compare
ADAM to SGD.

While ADAM is faster to learn a good policy, it is not more stable than RMSProp. It does, however, seem to
find policies that RMSProp is not able to within the given time. Unexpected is the abysmall performance of
SGD: while it was expected to underperform compared to ADAM and RMSProp, in practice it performs very
badly. Manual inspection shows that it maps every state to the same Q-values for each action during testing,

27

In contrast, the training curves showed that at training time it found acceptable policies - though not as good
as some of those found by ADAM and RMSProp. Moreover, its temporal difference errors converged. This
behavior is similar to that of the DDQN agent (see Section 4.5.6).

A possible explanation is that, when using SGD, the agent does not learn to distinguish states and instead
maps each state to the same action. Since that results in suboptimal actions, the action that each state is
mapped to changes during training, resulting in a normal policy (switching actions often is suboptimal but will
not lead to very bad performance). However, during testing the Q-value no longer changes, and thus the agent
selects the same action for every state, resulting in terrible performance. This could be tested by logging the
action values per agent for each training step, as well as the number of vehicles per lane, and then seeing if
the highest Q-value a) is independent of the state and b) switches back and forth. This is left to future work
(see Section 10.1). Note also the start of the average travel time graph for RMSProp: while RMSProp’s reward
before training is very low, the average travel time is already very good. This indicates that perhaps the reward
function used is not a perfect proxy for the average travel time.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

80

70

60

50

40

30

20

10

0

R
ew

ar
d

optimizer=ADAM optimizer=RMSProp

(a) Average reward and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 tr
av

el
 ti

m
e

optimizer=ADAM optimizer=RMSProp

(b) Average travel time and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

80

70

60

50

40

30

20

10

0

R
ew

ar
d

optimizer=ADAM optimizer=SGD

(c) Average reward and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 tr
av

el
 ti

m
e

optimizer=ADAM optimizer=SGD

(d) Average travel time and standard error.

Figure 4.5: Effect of optimization algorithm on reward and travel time.

4.5.4 Batch Normalization

To test the effect of batch normalization, the baseline DQN agent is compared to an agent with the same settings,
with the addition of batch normalization. The results are presented results in Figure 4.6. Similarly to earlier
work [40], results show that using batch normalization [14] destabilizes the system. While a good policy is found
much faster than for the baseline DQN agent, the agent starts oscillating immediately after and eventually no
longer reaches even the level of the baseline. This is in line with the fact that batch normalization speeds up
learning, but the noise introduced by estimating mini-batch statistics destabilizes learning [40]. The instability
may also be related to the fact that in regular deep learning problems, the underlying data distribution is
stationary, whereas in the DQN algorithm the distribution changes as the system learns. As a result, the mini-
batch statistics can never be a proper approximation of the population statistics, as these change continuously
during training.

28

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

80

70

60

50

40

30

20

10

0
R

ew
ar

d

Architecture: Nips Architecture: Nips_bn

(a) Average reward and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

0

100

200

300

400

500

600

A
ve

ra
ge

 tr
av

el
 ti

m
e

Architecture: Nips Architecture: Nips_bn

(b) Average travel time and standard error.

Figure 4.6: The effect of batch normalization on reward and average travel time.

4.5.5 Prioritized Experience Replay

The effect of rank-based prioritized experience replay is tested for temperatures of 0.0 (the baseline, uniform
sampling) 0.5 (midway between uniform and greedy sampling) and 1.0 (completely greedy sampling). The
rank-based variant is used, as it should be more robust to outliers [41]. The results comparing τ = 0.0 and
τ = 0.5 are presented in the first two graphs in Figure 4.7 and the results comparing τ = 0.0 and τ = 1.0 are
presented in the last two graphs in Figure 4.7.

Prioritized experience replay is found to stabilize the system somewhat, as well as reducing oscillation. The
network trained with τ = 0.5 is most stable. By setting τ = 0.5, greedy prioritized sampling and uniform
sampling are balanced. As mentioned in earlier research [41], using completely greedy sampling does not help
in stabilizing the system at all - in Figure 4.7 the greedy sampler is even less stable than the uniform baseline.
To understand why the balanced setting performs best, consider the fact that one odd sample - with a high
TD-error - is sampled deterministically in completely greedy prioritized sampling (τ = 1.0), whereas in balanced
prioritized sampling, this is not the case, so that these ‘noise spikes’ [41] are less influential in the balanced case.
Moreover, the balanced prioritized sampler recovers from oscillations more easily, possibly due to its balance
between sampling transitions with high TD-error and sampling more average transitions. By using both types
of transitions in the update, the agent is prevented from forgetting the ‘regular’ patterns in the long-term (i.e.
sampling these average transitions protects from catastrophic forgetting). On the other hand, by not sampling
completely uniformly, the balanced sampler enables a fast recovery from reward dips, because it samples high
information transitions more than the uniform sampler. This is important, since in catastrophic forgetting,
normal transitions will receive a high TD-error, since the model’s Q-value approximation of these transitions is
suboptimal.

29

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

80

70

60

50

40

30

20

10

0
R

ew
ar

d

τ=0.0 τ=0.5

(a) Average reward and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 tr
av

el
 ti

m
e

τ=0.0 τ=0.5

(b) Average travel time and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

80

70

60

50

40

30

20

10

0

R
ew

ar
d

τ=0.0 τ=1.0

(c) Average reward and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 tr
av

el
 ti

m
e

τ=0.0 τ=1.0

(d) Average travel time and standard error.

Figure 4.7: Effect of temperature in prioritized experience replay on reward and travel time.

4.5.6 Double Q-learning

DDQN appears normal during training, where the training curve (not pictured) is very stable - the temporal
difference errors converge - although it does not reach the policies with the highest rewards that some of the
less stable networks find. However, during evaluation of the greedy policy it performs abysmally - see Figure 4.8.

Manual inspection of the behavior learned by DDQN suggests that DDQN assigns extremely similar Q-values
to all actions, regardless of the state. Plotting the convolutional filters shows that all filters are ‘dead’, i.e.
completely zero, regardless of the input. For clarity, the filter activations for a simulation after 100 time steps
are plotted in Figure 4.9 and compared to the filters of the original DQN agent. For further comparison, a
DDQN network is trained with a smaller learning rate (α = 0.00025) and compared. Interestingly, while all
three agents have some dead filters, DDQN with α = 0.00025 has the least. However, it still displays the
anomalous behavior seen in the first DDQN agent. On the other hand, among the few filters in the original
DQN agent in the second layer that are properly activated, one is a very well-defined cross, whereas the same
layer in the DDQN agents has either dead or very fuzzy filters.

These suboptimal filter activations suggest that the DDQN agent is not learning properly, resulting in mapping
each state to the same action, which does not appear bad during training, where this action changes as the
Q-function changes, but performs terribly during testing, where the end-result is the agent choosing the same
action for every state. Similar behavior occurs for the SGD agent in Section 4.5.3, suggesting that this is a struc-
tural problem. One explanation is that DDQN’s tendency to underestimate action values [54] is detrimental to
the specific problem of traffic light control.

30

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

80

70

60

50

40

30

20

10

0
R

ew
ar

d

Type: DQN Type: DDQN

(a) Average reward and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 tr
av

el
 ti

m
e

Type: DQN Type: DDQN

(b) Average travel time and standard error.

Figure 4.8: Effect of Double DQN on reward and travel time.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

0

(a) DDQN, α = 0.001

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

0

(b) DDQN, α = 0.00025

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

0

(c) DQN, α = 0.001

Figure 4.9: Matrix representation of simulation state after 100 time steps, and corresponding first and second
convolutional layer filter activations for DDQN, DDQN α = 0.00025 and DQN agents.

4.5.7 Freeze Interval

Freezing the target network weights for longer times is expected to stabilize the system, due to targets moving
less often. To test this assumption, the baseline freeze interval (M = 30, 000) is compared to both a smaller
(M = 10, 000) and a larger (M = 50, 000) freeze interval.

Figure 4.10 shows that neither a smaller (M = 10, 000 - first two graphs) nor a larger (M = 50, 000 - last
two graphs) freeze interval results in a very stable agent. For the smaller freeze interval, this may be caused
by updates moving too fast, such that the goal of using the target network - to stabilize the target values - is
not being reached. Recall that the simulation episodes are cut short after 10, 000 time steps. This means that

31

for very bad policies, and M = 10, 000, the target network will be updated every episode, which may not be
desirable, especially for problems where episodes can be rather different from one another. For the larger freeze
interval, the instability may be caused by a) needing more training time - the target network is not updated
often, so the action network’s updates are not in the optimal direction yet or b) waiting too long between
target network updates results in a need for very strong gradient updates when it is finally updated, or c) the
target updates take too long, and the system starts moving in the wrong direction, unable to get out of a bad
trajectory.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

80

70

60

50

40

30

20

10

0

R
ew

ar
d

M=30000 M=10000

(a) Average reward and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 tr
av

el
 ti

m
e

M=30000 M=10000

(b) Average travel time and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

80

70

60

50

40

30

20

10

0

R
ew

ar
d

M=30000 M=50000

(c) Average reward and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 tr
av

el
 ti

m
e

M=30000 M=50000

(d) Average travel time and standard error.

Figure 4.10: Effect of freeze interval on reward and travel time.

4.5.8 Experience Replay Memory Size

Since the size of the experience replay memory determines the age of the samples used to update the Q-function,
the effect of using different memory sizes, |D| is compared in Figure 4.11, where the first two graphs compare
|D| = 50, 000 with |D| = 10, 000, and the last two graphs compare |D| = 50, 000 with |D| = 100, 000.

When training has just started, the largest memory size (|D| = 100, 000) is least stable, and the smallest
size (|D| = 10, 000) is doing very well. However, after 1 million time steps, the situation has reversed: the
largest memory is not oscillating as much, and has shallower reward dips, whereas the smallest memory is least
stable. Moreover, each agent has found a good policy at some point in time, but the smallest memory is least
able to stay there. Perhaps regular updates using some older experience are needed to prevent the agent from
constantly learning and then forgetting optimal behavior (i.e. catastrophic forgetting is prevented by updating
using some older experience). An agent with |D| = 10, 000 with a bad policy (resulting in episodes of maximum
length 10, 000 time steps) can only store experience of the latest episode.

32

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

80

70

60

50

40

30

20

10

0
R

ew
ar

d

D=50000 D=10000

(a) Average reward and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 tr
av

el
 ti

m
e

D=50000 D=10000

(b) Average travel time and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

80

70

60

50

40

30

20

10

0

R
ew

ar
d

D=50000 D=100000

(c) Average reward and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 tr
av

el
 ti

m
e

D=50000 D=100000

(d) Average travel time and standard error.

Figure 4.11: Effect of memory size on reward and travel time.

4.5.9 State Representations

This section compares different state representations for the DQN agent. It presents the effect of adding position
matrices, explicitly including vehicle speed and acceleration information, and position matrix sizes.

Number of Position Matrices Since adding binary position matrices implicitly adds information about
speed, acceleration, and so forth, different numbers of matrices are compared. The results are presented in
Figure 4.12 (where the first two graphs compare one matrix with two matrices, the second two graphs compare
one matrix with three matrices and the last two graphs compare one matrix with four matrices). The agent
using four matrices appears the most stable after one million time steps - it has no deep reward dips - but all
settings end up at a better policy than the baseline with only one frame after one million time steps.

33

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

80

70

60

50

40

30

20

10

0
R

ew
ar

d

frames=1 frames=2

(a) Average reward and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 tr
av

el
 ti

m
e

frames=1 frames=2

(b) Average travel time and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

80

70

60

50

40

30

20

10

0

R
ew

ar
d

frames=1 frames=3

(c) Average reward and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 tr
av

el
 ti

m
e

frames=1 frames=3

(d) Average travel time and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

80

70

60

50

40

30

20

10

0

R
ew

ar
d

frames=1 frames=4

(e) Average reward and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 tr
av

el
 ti

m
e

frames=1 frames=4

(f) Average travel time and standard error.

Figure 4.12: Effect of the number of position matrices on reward and travel time.

Binary versus Value Matrices The representation of a binary matrix with traffic light configuration infor-
mation is compared to the state representation that is a combination of multiple value matrices, the first with
vehicle positions, the second with vehicle speeds, the third with vehicle accelerations and the fourth with light
configurations.

Since the values representation has four matrices, the binary representation used is the one with four posi-
tion matrices. The results are presented in Figure 4.13. It seems that the values representation is starting to
oscillate much more strongly than the binary matrix. This may just mean that it would need longer to converge,
perhaps finding a better policy overall after some more training time, or perhaps the values are redundant and
slow down learning, resulting in a bigger space to search. This can easily be tested by allowing the algorithm

34

run for many more simulation steps, which is left to future work (see Section 10.1).

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

80

70

60

50

40

30

20

10

0

R
ew

ar
d

state=Binary state=Values

(a) Average reward and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 tr
av

el
 ti

m
e

state=Binary state=Values

(b) Average travel time and standard error.

Figure 4.13: Effect of state representation type on reward and travel time.

Matrix Size Since there is an inherent information loss present when converting from a continuous space of
vehicles on roads to a discrete matrix of vehicle positions, the matrix sizes of 84× 84 (from [31]) are compared
to double the matrix size, of 168× 168. That is, the position matrix is a representation of the same area in the
simulator, but is a more fine-grained representation in the 168 × 168 case. To contrast, it is also compared to
half the matrix size, of 42× 42.

The results are represented in Figure 4.14, where the first two graphs compare the baseline 84 × 84 DQN
agent with using a larger 168× 168 matrix, and the last two graphs compare the baseline 84× 84 DQN agent
with using a smaller 42× 42 position matrix. As training progresses, the larger size of the matrix does not help
with stability so much (there are smaller reward dips, but larger travel time spikes compared to the original).
However, the agent with larger matrix size finds a better policy than the original one, which is probably related
to vehicles not being lost in the translation from the simulator to the larger matrix representation. On the
other hand, the agent that uses a smaller matrix size is much more unstable than those that use the regular
and larger matrix sizes. It is possible that when the matrix is too small, there is too much of the state that
cannot be properly observed, and as a result the learning destabilizes.

35

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

80

70

60

50

40

30

20

10

0
R

ew
ar

d

size=84x84 size=168x168

(a) Average reward and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

0

100

200

300

400

500

600

700

A
ve

ra
ge

 tr
av

el
 ti

m
e

size=84x84 size=168x168

(b) Average travel time and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

80

70

60

50

40

30

20

10

0

R
ew

ar
d

size=84x84 size=42x42

(c) Average reward and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 tr
av

el
 ti

m
e

size=84x84 size=42x42

(d) Average travel time and standard error.

Figure 4.14: Effect of frame size on reward and travel time.

4.6 Fine-tuned Deep Q-learning Agent

Based on the results of Section 4.4 to 4.5.9, a fine-tuned DQN agent is trained, with settings as displayed in
Table 6. Even though four state matrices and 100, 000 memory size outperformed their counterparts, a lower
number of frames (two) and a smaller replay memory size (|D| = 50, 000) are used, to prevent memory issues
which arise due to computational limits.

Parameter Value
Replay memory size 50,000
Experience sampling Prioritized, τ = 0.5
Learning rate (α) 0.00025
Batch size 32
Exploration rate (ε) 0.1
Discount factor (γ) 0.99
Freeze interval 30000
State matrix size 168× 168
State matrix type Binary + light configurations
State matrix frames 2
Gradient momentum 0.95
Squared gradient momentum 0.95

Table 6: Settings for the fine-tuned DQN agent

The results of the fine-tuned DQN agent are compared to the baseline DQN agent in Figure 4.15. The fine-tuned
agent is more stable and finds better policies than the baseline DQN agent, but still suffers from instability,

36

though not as badly as the baseline.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

80

70

60

50

40

30

20

10

0

R
ew

ar
d

Baseline Finetuned

(a) Average reward and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 tr
av

el
 ti

m
e

Baseline Finetuned

(b) Average travel time and standard error.

Figure 4.15: Average reward and travel time of the greedy policy for the baseline DQN agent and the fine-tuned
DQN agent.

37

5 Multi-Agent Reinforcement Learning

This section introduces the necessary background information for coordination in multi-agent systems.

5.1 Coordination in Multi-Agent Systems

A multi-agent system (MAS) is a system of multiple interacting agents within the same environment. In
a cooperative multi-agent system (CMAS), agents cooperate to reach a common goal, often to maximize a
common reward. Thus, in a CMAS, at every time step, the agents need to find an optimal joint action ~a∗

~a∗ = (a1, · · · , aN) (43)

where a1 · · · aN are the actions of agents 1 to N , respectively. The optimal joint action is the action that
optimizes some global payoff function.

Using a centralized approach in finding the optimal joint action is usually not feasible, since the joint ac-
tion space grows exponentially with the number of agents. A naive approach to coordination would have each
agent select the action that maximizes her local reward. However, just combining all locally optimal actions
into a joint action is not guaranteed to reach the global optimum [4]. Thus, the actions need to be jointly
optimized, as the action agent i takes influences j’s optimal action.

In multi-agent reinforcement learning, agents simultaneously learn their respective Q-functions. For an agent
i, the actions taken by agent j 6= i are part of the environment. However, since j is learning alongside i, j’s
Q-function and thus j’s policy and behavior change over time. This non-stationarity means that original con-
vergence properties for single-agent algorithms no longer hold due to the fact that the best policy for i changes
as the other agents’ policies change [5]. Thus, this is another version of the moving targets problem from Section
2.4.3 and earlier work turns off experience replay due to this non-stationarity [10]. To understand why, recall
that experience replay allows the agent to use old and new experience during training. That means that in a
non-stationary environment, older experience provides information that is no longer true.

If the joint payoff functions of neighbouring agents are known in advance - or are learned separately, see
Section 5.4.1 - coordination algorithms can be used to compute the optimal joint action.

5.2 Coordination Graphs

A coordination graph is a graphical representation of the decomposition of a global payoff function g into a set
of smaller, local factors fij , where each factor is a smaller function, depending on a subset of the agents in the
graph. For example, the coordination graph in Figure 5.1a is decomposed by

CG(a1, a2, a3, a4) = f12(a1, a2) + f23(a2, a3) + f34(a3, a4) (44)

where f12, f23 and f34 are the factors that make up the coordination graph, and depend on the actions of their
respective agents. To find the joint optimal action ~a∗ that maximizes a global payoff function g

~a∗ = arg max
~a

g(~a) (45)

The following derivations follow the structure in [4].
The global maximization in Equation 45 can be decomposed as consequent local maximizations:

max
~a

g(~a) = max
a1
· · · max

aN
g(~a) (46)

Which can be rewritten in terms of factors (below, each factor is dependent on only two agents, but this is not
a requirement):

max
~a

g(~a) = max
a1
· · · max

aN

[
f12(·) + · · ·+ fN−1,N (·)

]
(47)

Using the distributive law for the max operator, sums and maximizations can be switched to find a more
computationally efficient order:

max
~a

g(~a) = max
a1

[
max
a2

[
f12(·) + [· · · max

aN
fN−1,N (·)]]] (48)

Using this representation, coordination algorithms, such as Variable Elimination [13], can be employed to
compute the optimal joint action.

38

5.3 Coordination Algorithms

This section introduces the coordination algorithms variable elimination and max-plus, both applicable to
cooperative multi-agent systems represented as coordination graphs.

5.3.1 Variable Elimination

Variable Elimination [13] exactly computes the maximizing joint action, by maximizing over one agent at a time.
For example, in the coordination graph in 5.1a, variable elimination would first eliminate agent 4 by maximizing
over f34 and finding the best action for each action that agent 3 can choose. This is the best response function
of agent 4, and it only depends on agent 3. Then, this is repeated for the other agents, until the last agent
simply maximizes over the previous agents’ best response function. By maximizing over one factor at a time
instead of over the global payoff function, variable elimination is much faster than optimizing over the entire
joint action space.

Although variable elimination is faster than maximizing over the global joint action space, it does not scale well
for graphs with many connections between nodes (such as grids, which are common in traffic systems) because
it grows exponentially in the number of agents in the largest factor. Moreover, it is not an anytime algorithm6

[24], and thus cannot be run with fewer iterations to get an approximate answer. Furthermore, it assumes that
the factors are common knowledge for all agents [57]. Since the coordination algorithm must be run on every
time step, using a computationally less expensive approximate algorithm, such as max-plus (see Section 5.3.2)
is a better choice for a CMAS [20].

5.3.2 Max-Plus

Finding the optimal joint action in a coordination graph is equivalent to finding the maximum a posteriori
(MAP) state in a graphical model [58]. To do so, a variation of the max-product algorithm, max-plus, can be
used.

The max-product algorithm is an inference algorithm based on message passing, used to find the maximum
a posteriori (MAP) state in graphical models. It is guaranteed to find an exact solution for acyclical graphs
such as in Figure 5.1a. However, in cyclical graphs such as in Figure 5.1b, it is not guaranteed to converge to a
good solution [4]. In the case of coordination between agents in a multi-agent system, the max-plus algorithm
can be used instead [19].

Instead of maximizing all actions simultaneously, messages containing information over locally optimal actions
are sent between agents to iteratively find the optimal joint action. Thus, a message from i to j [24]:

µij(j) = max
ai

[
fij(s, ai, aj) +

∑
k∈ne(i)\j

µki(i)

]
(49)

where ne(i)\j is the set of i’s neighbours, excluding j. In short, i sends a message to j that consists of a
maximization over i and j’s factor and the messages i has received from its neighbours that are not j. By
iteratively sending messages, max-plus converges to the maximal joint action in acyclical graphs. Moreover,
the algorithm has an anytime solution, meaning that it can be run using fewer iterations, and still get an
approximate solution.

5.4 Sequential Decision Making with Coordination

To apply coordination algorithms to a sequential decision making problem, the factors in the coordination graph
are the joint Q-functions. In that case, the factor fij between two agents i and j is defined as

fij(ai, aj) = Qij(s, ai, aj ; θij) (50)

where i and j are neighbouring agents, ai and aj are their actions and si and sj their states, s is the joint state
over both agents and θij is the weight matrix parameterizing Qij .

To find these functions, a naive approach would be to compute the sum of the individual Q-values:

Qij(s, ai, aj |θi, θj) = Qi(si, ai|θi) +Qj(sj , aj |θj) (51)

6An anytime algorithm is an algorithm that has a good approximate solution even if it has not finished, but is supposed to find
better solutions as it runs for longer periods of time.

39

A1 A2

A3A4

f12(a1, a2)

f23(a2, a3)

f34(a3, a4)

(a) Example of acyclical coordination graph

A1 A2

A3A4

f12(a1, a2)

f23(a2, a3)

f34(a3, a4)

f41(a4, a1)

(b) Example of cyclical coordination graph

Figure 5.1: Examples of multi-agent systems represented as coordination graphs

However, the optimal action for i is influenced by the action that j takes, and vice versa. A better approach is
to learn the joint local function over two agents directly. While this approach is not feasible for large numbers
of agents - since the joint action space grows exponentially in the number of agents - the decomposition of the
global reward into a coordination graph makes this approach feasible, since the factors only contain a few agents.

The globally optimal joint reward can then be computed using coordination algorithms such as max-plus.
Earlier work learns the local joint Q-functions simultaneously between agents [20], but another approach is
transfer planning [34], where the local joint Q-functions are learned separately from the multi-agent system and
re-used at testing time. A third option is to combine these approaches: using transfer planning to initialize
the weights of the Q-functions for the larger problem, and then simultaneously learning in the larger problem.
More details on transfer planning can be found in Section 5.4.1.

5.4.1 Transfer Planning

In transfer planning [34], large problems consisting of many agents are solved by finding the Q-values Qσ of
smaller source problems and using these as heuristics for the larger, multi-agent problem. For an example, see
Figure 6.2. The term transfer planning is used because of its inspiration in transfer learning [49], where the
value function of a source problem is used as an initialization of the value function of the current problem. Al-
though there are no theoretical guarantees that these Q-functions are appropriate for the new problem, transfer
planning is more efficient due to its decoupling of a large, multi-agent problem into smaller source problems
that can be solved more easily.

In the case of a CMAS that can be decomposed into a coordination graph, transfer planning entails learn-
ing the joint Q-value function for a subset of agents, and using this joint value function in a coordination
algorithm such as max-plus. Specifically, the joint local Q-value Qf is learned for each factor f in coordination
graph CG, separately from the other agents. Then, during execution, Qf is used to compute local payoff func-
tions for use in e.g. max-plus.

For the pseudocode of the entire algorithm, see Algorithm 5.

The advantage of using transfer planning instead of multi-agent reinforcement learning is that the non-stationarity
that appears when multiple agents learn in tandem is circumvented. Moreover, by learning the Q-function to a
much simpler problem and then re-using it, less time has to be spent training. If the factors in the graph are
very similar, only a single source problem needs to be found, which can be re-used for every factor. However, if
the factors differ significantly, a source problem must be found for each factor individually, but no more source
problems than factors are needed. Moreover, these source problems are easier and faster to train than learning
Q-functions simultaneously. A disadvantage is that the approximation of the Q-value is less accurate, since
during training there is no information about the result of other agents’ behavior - an agent can observe only
the behavior of their direct neighbours.

40

Algorithm 5 Multi-Agent Transfer Planning with Deep Q-learning.

1: ∀ factor f ∈ CG: initialize Qf learned using Algorithm 3
2: Initialize s = s0
3: for time step t in episode do
4: for factor f ∈ CG do
5: ∀~af ∈ Af get local joint Q-value Qf (s,~af) // Get Q-values for each joint action in the factor
6: end for
7: ~a∗ = maxPlus({Qf (s, ·)}) // Use max-plus to compute ~a∗ using the set of local joint payoffs
8: for agent j = 1 · · ·n do
9: take action ~a∗j

10: end for
11: Get r, observe s′

12: Set s = s′

13: end for

41

6 Deep Multi-Agent Reinforcement Learning for Coordination in
Traffic Light Control

This section describes the approach used to extend the deep reinforcement learning approach to a multi-agent
setting. For the coordination algorithm the libDAI library [32] is used. For the experiments, a joint local
Q-function is trained between two agents using the baseline and fine-tuned DQN settings for the single-agent
case. The hyperparameters used in the coordination algorithm can be found in Table 7.

Name Setting
Maximum iterations 30
Tolerance 10−9

Updates Sequential using a random schedule
Damping factor 0.5

Table 7: Parameter settings for coordination algorithm

6.1 Multi-Agent Scenarios

The approach is tested on three scenarios: first, a local joint payoff functions for the two-agent scenario in
Figure 6.1 is trained and evaluated using Algorithm 3.

Figure 6.1: Two-agent scenario

6.2 Transfer Planning

Once the joint Q-value function for the two-agent scenario is learned, this is used as the source problem in
transfer planning. To solve the multi-agent scenarios, this source problem is used for each pair of neighbouring
agents. After finding the local joint Q-value function for the factors in the multi-agent problem, the Q-function
is re-used for all similar factors in the larger multi-agent problem. For an example regarding a four-agent
scenario, see Figure 6.2, where the Q-values for two two-agent source problems - Qσ and Qζ , for the rotated
factor - are learned separately, and then applied to a coordination algorithm in the four-agent scenario. For the
three-agent scenario, Qσ is re-used for both factors in the graph. Thus, the two-agent Q-function is re-used to
compute a globally optimal joint action for the three-agent scenario in Figure 6.3 and the (cyclical) four-agent
scenario in Figure 6.4.

42

Qσ

Qζ

Figure 6.2: Transfer planning for traffic light control

Figure 6.3: Three-agent scenario

43

Figure 6.4: Four-agent scenario

44

7 Multi-Agent Experiments

This section outlines experiments and results for the embedding of deep reinforcement learning into multi-agent
traffic control.

7.1 Baseline

The performance of the DQN approach is compared to that of a baseline. Wiering’s vehicle-based approach
[60], is a model-based reinforcement learning algorithm that uses a decomposition of the reward function based
on the number of halted vehicles on each traffic light agent’s lanes. In Kuyer’s coordination approach [24] this
is extended with max-plus to introduce coordination. For details on these algorithms, see Section 8.

The baseline for the two-agent scenario uses Wiering’s vehicle-based decomposition to estimate Qi(s, ai, aj).
That is, for agent i, the Q-value is estimated over the joint action space between itself and its neighbour j. The
baseline for the three- and four-agent scenarios uses Kuyer’s approach: the joint local Q-functions estimated
using Wiering’s vehicle-based approach are combined with max-plus to introduce coordination. Similar to Sec-
tion 4, the baseline selected is the model that found the policy with the highest average reward during training,
which is evaluated on 16 simulations.

7.2 Two-Agent Scenario

In this scenario, another agent is added to the scenario of Section 3.5, resulting in a chain of two agents, as
shown in Figure 6.1.

First, the untuned baseline DQN agent and the fine-tuned DQN agent are trained with the settings from
Table 5 and Table 6 respectively, but as though each was a single agent controlling two intersections. As such,
its action space is now the cross-product of the single agent action space with itself. Similarly to the single agent
approach, every 10, 000 training steps the greedy policy is evaluated on 16 simulations, and the resulting mean
and standard error are plotted. The result can be found in Figure 7.1. As a baseline, the single horizontal line
in Figure 7.1b is the average travel time found by the best performing Wiering agent [60]. Since the Wiering
algorithm uses a different reward function, it can only be compared on the basis of average travel time.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

80

70

60

50

40

30

20

10

0

R
ew

ar
d

Baseline Finetuned

(a) Average reward and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

100

200

300

400

500

600

700

800

900

A
ve

ra
ge

 tr
av

el
 ti

m
e

Baseline Finetuned

(b) Average travel time and standard error.

Figure 7.1: Average reward and travel time of the greedy policy for the baseline DQN agent and the fine-tuned
DQN agent. The single horizontal line is the best performing Wiering agent.

Although both DQN agents find better policies than the baseline, a quick comparison to Figure 4.1 immediately
shows the increased instability of the baseline DQN settings for the two-agent setting compared to the one-agent
setting. Simply put, the two-agent scenario is a more difficult problem for a multitude of reasons. For one, the
square state matrices now have to represent a rectangular local grid 7. This results in more compression along
the axis where the two intersections are aligned, compared to the axis of a single intersection. In Figure 6.1, for
example, the horizontal axis is more compressed. This can lead to misjudgments, since the horizontal axis will
appear queued much faster than the vertical axis. Aside from unbalanced compression, the compression itself

7Using rectangular input layers was not supported in the used library (Lasagne) at the time of experimentation. In future work,
this would be preferable

45

is a problem. Along the more compressed axis, the agent now has half the resolution to solve a more difficult
problem. Lastly, while selecting the wrong action in the single agent scenario can lead to a queue, this can be
resolved relatively easily by opening up the corresponding road. However, in the two agent scenario one action
can end up being ‘blocked’, that is, the road between two intersections ends up so queued that vehicles heading
in that direction can no longer enter. Moreover, if adding vehicles to the shared road is the right action for the
first intersection, this can lead to jams for the second intersection. Thus, the consequences of actions are no
longer as straightforward as opening up a road to dissolve a queue.

On the other hand, the fine-tuned DQN agent does not suffer from the same instabilities that the baseline
DQN agent does. There are some dips in reward, but they are not as low and are resolved more quickly. This
may for a large part be the result of using more fine-grained position matrices (recall that the baseline agent
uses 84 × 84 matrices, and the fine-tuned agent uses 168 × 168 matrices). Using a fine-grained matrix is more
important in the two-agent scenario, since the area the matrix has to represent is larger. This explains why the
fine-tuned agent does not suffer from instability as much as the baseline DQN agent does.

7.3 Three-Agent Scenario

The two-agent scenario is used to learn the local joint value function of a scenario with two agents. Once this
joint Q-network is trained, it can be used in a multi-agent setting, where each pair of agents uses this Q-function
in action selection, as described in Section 6.2. The joint Q-network is used to evaluate the joint action of two
agents, a value that is needed in the coordination algorithm. Thus, for this algorithm it is assumed that an
agent has full communication/observability of its neighbour’s state and chosen action. For coordination, the
max-product algorithm in log space is used, with parameter settings in Table 7. A small, random, perturbation
ε ∼ N (0, 10−6) is added to each Q-value before we perform coordination to prevent numerical underflow.

The results can be found in Figure 7.2. The DQN approach beats the Kuyer approach. Moreover, it is clear
that the global reward increases as the two-agent value function is trained, but the instability that was found in
Figure 7.1 has not increased. On the contrary, whereas the two-agent evaluations show that reward sometimes
dips below random behavior, the three-agent scenario always has a higher reward after training. Similarly to the
two-agent scenario, the fine-tuned agent is more stable - less dips in reward - than the baseline agent. However,
the policies it finds are not much better than the baseline DQN agent.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

120

100

80

60

40

20

0

R
ew

ar
d

Baseline Finetuned

(a) Average reward and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

0

200

400

600

800

1000

1200

A
ve

ra
ge

 tr
av

el
 ti

m
e

Baseline Finetuned

(b) Average travel time and standard error.

Figure 7.2: Three agent scenario with baseline DQN settings from Table 5 and fine-tuned DQN settings from
Table 6. The single horizontal line is the best performing Kuyer agent.

7.4 Four-Agent Scenario

Similarly to the three-agent scenario, the four-agent scenario uses the learned joint value function from the
two-agent scenario in a coordination algorithm. The results can be found in Figure 7.3. Contrary to the three-
agent case, the four-agent scenario with the untuned agent sees quite a few places where the global reward for
the DQN agent is lower than before training, suggesting that the combination of the two-agent value function
heuristic and loopy belief propagation can result in very suboptimal coordinated policies. On the other hand,
the fine-tuned agent has one very large dip close to the end, but performs very well otherwise. Moreover, this
does not mean that the untuned agent finds no good policy: near the end of the training curve, the reward

46

is higher than -50, which is close to the optimal reward found in the three-agent scenario - a difficult feat to
achieve, since there are extra lanes and vehicles in the simulation. Interestingly, the dips in the four-agent
untuned training curve (between approximately 400, 000 and 600, 000) do not correspond to the dips in the
two-agent untuned training curve (between approximately 600, 000 and 800, 000). Moreover, the average travel
time in the four-agent scenario does not improve with training - it gets a lot worse around the reward dip in
Figure 7.3a, but does not improve quite as much in other places. However, it is unclear why the travel time
seems acceptable at the start, while the average reward is still low. Perhaps the reward function chosen is not
a perfect proxy for the average travel time.

In contrast to the baseline DQN agent, the fine-tuned agent does not exhibit this reward dip at all, and
performs quite well overall, finding better policies than both the Kuyer approach and the baseline agent, except
for a small dip between 600, 000 and 800, 000 training steps, which correlates with the dip in the two-agent
scenario. Of course, if the source problem is not well approximated, the performance for the larger problem is
not expected to be as good. Note that in the three-agent scenario, the fine-tuned DQN agent did not find much
better policies than the baseline DQN agent. In the four-agent scenario however, it does. This may suggest that
in cyclical graphs, where max-plus has no convergence guarantees, using a strong approximator is much more
important than for acyclical graphs. However, both the baseline DQN and the fine-tuned agent outperform the
Kuyer algorithm most of the time.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

120

100

80

60

40

20

0

R
ew

ar
d

Baseline Finetuned

(a) Average reward and standard error.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps 1e6

0

500

1000

1500

2000

2500

3000

A
ve

ra
ge

 tr
av

el
 ti

m
e

Baseline Finetuned

(b) Average travel time and standard error.

Figure 7.3: Four agent scenario with baseline DQN settings from Table 5 and fine-tuned DQN settings from
Table 6. The single horizontal line is the best performing Kuyer agent.

47

8 Related work

This section details earlier research related to deep reinforcement learning and coordination, or reinforcement
learning and traffic light control.

8.1 Deep Reinforcement Learning and Coordination

Recent work [10] proposes using deep reinforcement learning to train agents to communicate in order to coop-
erate. Specifically, they attempt to learn communication protocols. They use deep recurrent Q-learning, but
turn off experience replay, since multiple agents learning in tandem constitute a non-stationary environment,
in which case experience replay can be detrimental, as noted in earlier work [26]. Moreover, they do not learn
communication actions and regular actions together, but as two separate networks to save computation time.
Furthermore, while they use decentralized execution (i.e. decisions are made on the local level, per agent),
they employ centralized learning, where during training agents can freely communicate. This means that the
approach is only useful when training and testing happen in decidedly different environments.

Other work [48] uses deep Q-learning to learn independent Q-functions for two agents in the game of Pong. By
manipulating the reward function, competitive Pong (beating the other agent), cooperative Pong (keeping the
ball in the game) and versions of the game that fall between these two extremes are compared. They do not
mention turning off experience replay due to the non-stationarity of the environment, indicating that this was
not a problem for either the cooperative nor the competitive scenario.

8.2 Traffic Light Control

Earlier work on traffic light control by Wiering [60] uses a very different reward function definition than the
DQN approach, based on vehicle movement. That is, the reward for a traffic light agent is the sum over rewards
per vehicle on the agent’s controlled lanes. The reward on time step t for a vehicle v on position pvt is

r(v) =

{
0 if pvt 6= pvt−1
−1 otherwise

(52)

The reward function is decomposed in this way to allow a tabular representation to be used, without iterating
over all possible configurations of vehicles on lanes - which is an enormous state space. While the DQN approach
solves this by using a convolutional neural network on the matrix of vehicle representations, their algorithm
solves it by decomposing the space of all possible vehicle matrices into a linear combination of vehicle states.
Moreover, Wiering’s approach is model-based, meaning that it builds a model of the environment and uses that
model to approximate the Q-value of an s, a-pair.

The baseline algorithm used in the multi-agent experiments is work by Kuyer [24], based on Wiering’s vehicle-
decomposition approach, and combines it with max-plus coordination. Their approximation of the joint local
Q-function between agents i and j is

Qij(s, ai, aj) = Qi(s, ai, aj) +Qj(s, aj , ai) (53)

where ai and aj correspond to the actions of agent i and j respectively. That is, both i and j have a Q-function
that is based on the joint action of i and j. Thus, in this algorithm, the reward is defined as the negative of
the number of halted cars on the agents’ controlled lanes. The Q-value is updated per vehicle, based on the
vehicle’s possible next locations. However, this reward function does not take into account e.g. the fact that
constantly stopping and starting vehicles, or having each vehicle drive extremely slowly, results in high reward,
without necessarily leading to optimal traffic throughput. Moreover, in e.g. SUMO, computing possible next
locations per vehicle is expensive, due to needing many calls to the simulator per vehicle, e.g. to retrieve the
vehicle’s current position and car speed. Similarly to the DQN approach, the Kuyer algorithm computes joint
local Q-value functions and uses them in coordination. For more details on these algorithms, see [60] and [24].

Recent work [17] extends the Wiering approach to a Bayesian multi-objective setting. Other work related
to coordinated traffic light control [28] uses max-plus to suggest actions, which are then included as a part of
the Q-function of the individual agent. That is, whereas the approach in this thesis uses Q-learning to learn
factors to use in max-plus, they propose using the actions suggested by max-plus to add value to the Q-values
of those actions. In other work [9], agents learn their own Q-functions and an estimation of the Q-functions
of neighbours, to prevent the need for coordination algorithms. However, neither demonstrate improving upon
the Kuyer algorithm. Thus, the baseline used is a current state of the art algorithm for reinforcement learning
for traffic light control, which is beaten by the DQN approach (see Section 7).

48

9 Discussion

While applying deep Q-learning to traffic control may seem quite straightforward due to great successes in
earlier research [31, 43], this turns out not to be the case for multiple reasons. For one, in traffic, an agent
suffers the consequences of taking suboptimal actions for a long time, since jams can make it near-impossible
for the agent to return to an optimal state, especially in scenarios with multiple junctions. Compare this to
games such as Pong or Breakout, two of the Atari games used in earlier research [31, 55, 42], where one missed
ball results in a reward of -1 and a fresh start - one mis-step is not as detrimental for Atari games such as Pong
or Breakout as it can be for traffic light control.

Moreover, traffic agents suffer a lot from missing information: if the matrix resolution is too low, some ve-
hicles are not represented in the matrix due to being overwritten by traffic light setting. Missing a vehicle can
result in keeping the vehicle stuck there forever, as the agent prioritizes other roads first, or, not having seen
the vehicle, never turns the light to green on the vehicle’s road. However, the agent had no problem taking
appropriate actions as long as the queue of vehicles was long enough for the network filters to pick up on. Thus,
care needs to be taken to select a matrix resolution where each vehicle is represented by at least one entry,
and there is sufficient space between vehicles waiting before a red light and traffic lights such that one does not
occlude the other in the state representation. However, despite these issues, the DQN approach found better
policies than the best performing baseline agent.

In the multi-agent case, manual inspection shows a nice flow where the agent allows a queue of vehicles to
come through, switching to a red light in time for the vehicles to stop. In the three-agent chain, this results in
the left and right agent sending cars to the middle agent to arrive just as the middle agent’s vertical road empties
out and it switches lanes. The four-agent scenario is solved similarly, though, due to the cyclical structure of
this scenario, the actions taken are not always optimal8.

Even though the DQN approach can be improved in many ways, it outperforms the baseline of the Wier-
ing/Kuyer algorithm (evaluated at the best version during training time). More importantly, the fine-tuned
DQN agent found much stronger policies for the four-agent case than the baseline DQN agent, whereas in the
three-agent scenario this was not the case. This suggests that using a good Q-function approximation is much
more important in cyclical graphs - for which max-plus is not guaranteed to find a good solution - than for
acyclical graphs, which do have these guarantees.

While good policies were found by almost any combination of parameter settings for DQN, and they out-
performed the baselines, stability issues were encountered during training: the height of the reward oscillated.
This may be related to catastrophic forgetting [27], a phenomenon where information stored in a neural network
is lost when it is overwritten by new training samples. Different parameter settings and algorithm modifications
were tested in order to alleviate this problem. Prioritized experience replay helps alleviate stability issues to a
certain degree, especially when balancing purely greedy sampling with uniform sampling, such that knowledge
of high information transitions is exploited, while preventing catastrophic forgetting by also sampling ‘average’
transitions. By sampling both types of experience, the Q-function is never moved too far away from being a
good approximator for ‘normal’ experiences. Another possible solution to the problem of oscillations caused
by this phenomenon may be clipping of the reward signal and TD-error, which was used in earlier research
[31, 41]. By clipping these signals, the gradients cannot grow indefinitely large. This is left to future work.
Another option is to use dropout [44], where during training time units in the neural network are turned off
with probability p. By randomly turning off units during training time, decisions made by the agent cannot
become too dependent on dependencies between specific units, and the network is forced to generalize more.
Earlier work [11] finds that dropout alleviates the problem of catastrophic forgetting.

Despite these problems with oscillating training curves, divergence was not a problem except in the case of
combining the DQN algorithm with batch normalization [14]. While batch normalization is now standard prac-
tice for many deep learning applications, earlier research has also found it to cause divergence when applied to
deep reinforcement learning [40]. They hypothesize that batch normalization’s noisy estimates of population
statistics destabilize learning in deep reinforcement learning. Another factor in this destabilization could be
the fact that the underlying data distribution is non-stationary in DQN, whereas in the deep learning areas
where batch normalization has been successful, the data distribution can be assumed to be stationary (i.e.
machine learning problems with static data sets). In DQN, as the agent learns, the distribution over transitions
s, a, r, s′ it encounters also changes. As a result, the data distribution changes during training, and a mini-batch
sampled from experience replay contains data points that have been sampled from different data distributions.

8For videos of behavior found, see http://bit.ly/DQN_traffic

49

http://bit.ly/DQN_traffic

That means that the mini-batch statistics are an estimation over a very different distribution than the actual
current data distribution, and this changes continuously. As a consequence, the learned batch normalization
parameters β and γ may not be stable either, which may further contribute to destabilizing the learning process.

Finally, the DDQN algorithm was stable during training time (no oscillations in the temporal-difference er-
ror), but performed abysmally during testing time. This is very unexpected, and may have been caused by a
software bug. However, running the regular DQN algorithm with a standard SGD optimizer shows a similar
issue: it seems stable during training time, but performs terribly during testing. When inspecting the Q-values
learned by the DDQN algorithm and the DQN algorithm with the SGD optimizer, they were very similar
between actions, and often independent of the state. One possible explanation for the discrepancy between
training and testing is that, during training, the Q-values still change, and thus, so does the greedy action to
take. During testing however, the Q-values no longer change and as such a bad Q-function maps every state to
the same action. This may suggest that the algorithm gets stuck in some local minimum, which is not apparent
during training, but leads to failure during testing. This should be tested by monitoring action values and states
during training, and seeing if they indeed switch back and forth, and are unrelated to the state. Moreover,
while SGD is known to get stuck in local minima, for DDQN this may be caused by its tendency to underes-
timate action values, which is beneficial in some cases, but on the other hand, so is the original Q-learning’s
overestimation in some cases [54].

Generally, the DQN algorithm is able to find very good policies, outperforms the baselines and is usable in
a multi-agent setting using transfer planning. However, its stability is sensitive to a lot of factors, and care
needs to be taken to find a good state representation. Moreover, using prioritized experience replay is recom-
mended, as it is able to alleviate some of the problems encountered in training the DQN algorithm.

50

10 Conclusion

This thesis presented the application of deep reinforcement learning to the problem of controlling traffic light
intersections and coordinating between traffic light agents.

Q1 asks ‘Can a deep reinforcement learning agent learn to manage traffic based only on top-down images
of traffic situations? Moreover, how do different hyperparameter settings - such as the network architecture,
or the database size - influence the algorithm’s behavior on the traffic light control problem? ’ - in both the
single and the coordinating traffic lights scenarios, deep reinforcement learning using position matrices as state
representations found good policies, but lacked stability. The stability was somewhat improved by adding more
information to the state (such as using larger position matrices or a larger number of position matrices), by using
a larger experience replay memory and by using a lower learning rate. On the other hand, neither smaller nor
larger freeze intervals stabilized learning, and including information on vehicle speeds resulted in less stability.

To answer Q2, ‘How can a reward function for traffic control be shaped, such that the resulting reinforcement
learning agent minimizes traffic jams, delay and unsafe situations? ’, a reward function was used that com-
bines vehicle delay, vehicle waiting time, vehicle ‘teleports’ (jams and collisions) and emergency stops and light
switches, each with an experimentally chosen weight. This function proved to be a good proxy for minimizing
average vehicle travel time in general, with some exceptions where the average travel time and reward were
both low.

Q3 - ‘How does the use of modifications such as prioritized experience replay and double Q-learning compare to
the use of the unmodified deep reinforcement learning algorithm? ’ - was answered by testing both prioritized
experience replay with different temperature settings, and double Q-learning. When using a temperature for
prioritized experience replay that balances greedy and uniform sampling, learning was most stable. On the
other hand, double Q-learning was very stable during training, but performed very badly during testing.

Finally, Q4, ‘Can deep reinforcement learning policies be used in cooperation in traffic control, and more impor-
tantly, can the resulting algorithm outperform more traditional approaches to using reinforcement learning in
traffic light control? ’ can be answered positively: using transfer planning, deep reinforcement learning was used
in combination with max-plus, resulting in an approach to coordination in traffic light control that outperforms
earlier work.

Traffic light control presents unique challenges not necessarily present in the benchmarks used in earlier work.
Moreover, deep reinforcement learning for traffic light control suffers from stability issues. However, in principle
the approach of using deep reinforcement learning for learning source problems in transfer planning is promising,
and there are many directions for future research that can make this approach more reliable, both in general
and for the specific problem of traffic light control.

In conclusion, deep reinforcement learning is promising for use in multi-agent coordination, and with the use of
a transfer planning approach avoids issues with simultaneous multi-agent reinforcement learning. Avenues for
further research are presented below.

10.1 Future work

Deep reinforcement learning has recently met with a lot of success, but is still a newly developing field. As
such, there are many open venues for research, some specifically suitable to the problems tackled in this thesis,
others useful to deep reinforcement learning in general.

Spatially Sparse Convolutional Networks Spatially-sparse Convolutional Networks [12] are especially
applicable to the problem presented here. Since most of the state matrix is not a road, and as a result will
not contain vehicles and always be zero, the position matrices used are very sparse. Using an approach that
exploits the sparseness of these matrices can potentially greatly reduce computation times.

Dropout The problem of catastrophic forgetting may be caused by the neural network learning to depend
too much on dependencies between specific network units. In dropout, units are turned off with probability p
during each training step, forcing the network not to depend on these dependencies too much. Using dropout
is reported to alleviate the problem of catastrophic forgetting [11]. By reducing dependencies between neural
network units, the network becomes a better generalizer.

51

Experience Replay Database Composition Earlier work [7] found an increase in stability when reserving
part of the experience replay database for very early experience only. While there is no guarantee that earlier
experience is still relevant later - since the underlying data distribution changes during learning - it might be a
promising direction for future research.

Experience Replay Sampling In this thesis, uniform sampling was compared with rank-based prioritized
experience sampling [41]. However, it was not compared to proportional prioritized sampling, which outper-
formed rank-based sampling in some cases [42].

Consistent Bellman Operator Recent work [1] investigates the use of so-called consistent Bellman operators
in deep reinforcement learning. These new operators increase the gap between the optimal and second-best
action, and the authors show empirically that this increases convergence speed and outperforms the regular
Bellman operator when used in the DQN algorithm and applied to the Atari benchmark.

Multi-Objective Reward Function In the current approach, the reward function is a weighted sum of five
different objectives, where the weights are set empirically. However, the area of multi-objective reinforcement
learning deals with finding these weights in a more controlled manner. Employing multi-objective reinforcement
learning for problems such as these, where the reward is a combination of multiple objectives, may prove more
effective. Combining multi-objective reinforcement learning with DQN is especially interesting since, to the
best of my knowledge, deep reinforcement learning has not yet been applied to the multi-objective case.

Pre-training The current DQN algorithm trains the convolutional layers of the network from scratch. How-
ever, since the filters that are being learned are related to recognizing jams (which appear in position matrices
as edges), perhaps training could be greatly sped up by pre-training the convolutional layer by initializing them
with the weights of the lower layers of existing image recognition networks (e.g. convolutional networks trained
on Imagenet). Another option is to initialize using the weights of a convolutional auto-encoder, trained to
reconstruct traffic situations.

Weight Normalization Experiments presented in this thesis showed that the use of batch normalization
destabilizes learning for deep reinforcement learning, a finding that was also reported in earlier work [40],
which hypothesizes that by using mini-batch statistics to estimate population statistics, noise is introduced that
destabilizes learning. The same work also introduces weight normalization, an alternative to batch normalization
where the weight vector of network units are decoupled into a direction vector ~v and a scalar parameter g, which
supposedly speeds up convergence without relying on computationally costly and noisy mini-batch statistics.
As future work it might prove useful to do a qualitative comparison of both methods in deep reinforcement
learning.

Curriculum Learning In curriculum learning [3], rather than immediately training a machine learning
model on difficult problem instances, the model is trained by slowly increasing the difficulty of the problem.
In the traffic light control setting, that means that training starts on intersections with little traffic and the
demand is slowly increased. This is useful for traffic light control, since when training starts from high demand
intersections, jams arise quickly and are hard to resolve. If the agent has already learned the structure of an
easier problem, it may be able to handle these more difficult problems much better.

Deep Multi-Agent Reinforcement Learning The current approach to the coordination problem in traffic
light control was to employ transfer planning: learning the joint local value function for a small source problem,
and re-using this to compute an optimal joint action using a coordination algorithm. The catastrophic forgetting
experienced when using deep Q-learning was detrimental to the stationary single-agent learning, due to the agent
not being able to retain older knowledge. On the other hand, it may turn out to be less of a problem when
using DQN to learn the non-stationary environment of multi-agent reinforcement learning, as older knowledge
may cease to be useful in that scenario.

Demand Data Generation The way the traffic demand data is generated in the current approach is very
simple and follows a uniform distribution. However, in reality, traffic demand is higher around rush hours
and lower at other times, and different lanes may have different demand distribution. A suitable approach to
modeling the demand data could be to learn distributions per lane from real world data.

52

Longer Training Times In some experiments (for example, those with speed and acceleration data added
to the state representation), the suboptimal behavior of the agent may have been caused by limited training
periods. Perhaps some results would change significantly if these algorithms had had more extensive training
times.

Reward/TD-error Clipping Earlier work [31, 41] clips the reward and temporal-difference error to fall
between -1 and 1. By clipping these signals, the gradients cannot grow indefinitely large, which is reported to
help with stability. Clipping these values may help stabilize the training process for traffic light control too.

Investigation of DDQN and SGD The DDQN agent and SGD agent performed badly, which may have
been caused by Q-values changing during training, but their value being unrelated to the state, i.e. a bad
approximator is learned, but this cannot be seen during training time. This hypothesis should be tested by
inspecting the training process, and seeing if this is indeed the case.

53

References

[1] Marc G Bellemare, Georg Ostrovski, Arthur Guez, Philip S Thomas, and Rémi Munos. Increasing the
action gap: New operators for reinforcement learning. arXiv preprint arXiv:1512.04860, 2015.

[2] Richard Bellman. Dynamic programming. Princeton University Press, 1957.

[3] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Proceed-
ings of the 26th annual international conference on machine learning, pages 41–48. ACM, 2009.

[4] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[5] Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of multiagent reinforce-
ment learning. IEEE Transactions on Systems, Man, And Cybernetics-Part C: Applications and Reviews,
38 (2), 2008, 2008.

[6] Commission of the European communities. White paper-European transport policy for 2010: time to decide.
Office for Official Publications of the European Communities, 2001.

[7] Tim de Bruin, Jens Kober, Karl Tuyls, and Robert Babuška. The importance of experience replay database
composition in deep reinforcement learning. In Deep Reinforcement Learning Workshop, NIPS, 2015.

[8] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochas-
tic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[9] Samah El-Tantawy, Baher Abdulhai, and Hossam Abdelgawad. Multiagent reinforcement learning for inte-
grated network of adaptive traffic signal controllers (marlin-atsc): methodology and large-scale application
on downtown toronto. IEEE Transactions on Intelligent Transportation Systems, 14(3):1140–1150, 2013.

[10] Jakob N Foerster, Yannis M Assael, Nando de Freitas, and Shimon Whiteson. Learning to communicate
with deep multi-agent reinforcement learning. arXiv preprint arXiv:1605.06676, 2016.

[11] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investigation
of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211, 2013.

[12] Benjamin Graham. Spatially-sparse convolutional neural networks. arXiv preprint arXiv:1409.6070, 2014.

[13] Carlos Guestrin, Michail Lagoudakis, and Ronald Parr. Coordinated reinforcement learning. In ICML,
volume 2, pages 227–234, 2002.

[14] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[15] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in partially
observable stochastic domains. Artificial intelligence, 101(1):99–134, 1998.

[16] Venkatesan Kanagaraj, Gowri Asaithambi, CH Naveen Kumar, Karthik K Srinivasan, and R Sivanan-
dan. Evaluation of different vehicle following models under mixed traffic conditions. Procedia-Social and
Behavioral Sciences, 104:390–401, 2013.

[17] Mohamed A Khamis and Walid Gomaa. Adaptive multi-objective reinforcement learning with hybrid
exploration for traffic signal control based on cooperative multi-agent framework. Engineering Applications
of Artificial Intelligence, 29:134–151, 2014.

[18] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[19] Jelle R Kok and Nikos Vlassis. Using the max-plus algorithm for multiagent decision making in coordination
graphs. In Robot Soccer World Cup, pages 1–12. Springer, 2005.

[20] Jelle R Kok and Nikos Vlassis. Collaborative multiagent reinforcement learning by payoff propagation.
Journal of Machine Learning Research, 7(Sep):1789–1828, 2006.

[21] Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, and Laura Bieker. Recent development and appli-
cations of sumo–simulation of urban mobility. International Journal On Advances in Systems and Mea-
surements, 5(3&4), 2012.

54

[22] Stefan Krauß. Microscopic modeling of traffic flow: Investigation of collision free vehicle dynamics. PhD
thesis, 1998.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[24] Lior Kuyer, Shimon Whiteson, Bram Bakker, and Nikos Vlassis. Multiagent reinforcement learning for
urban traffic control using coordination graphs. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 656–671. Springer, 2008.

[25] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[26] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching. Ma-
chine learning, 8(3-4):293–321, 1992.

[27] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. Psychology of learning and motivation, 24:109–165, 1989.

[28] Juan C Medina and Rahim F Benekohal. Traffic signal control using reinforcement learning and the max-
plus algorithm as a coordinating strategy. In 2012 15th International IEEE Conference on Intelligent
Transportation Systems, pages 596–601. IEEE, 2012.

[29] Francisco S Melo, Sean P Meyn, and M Isabel Ribeiro. An analysis of reinforcement learning with function
approximation. In Proceedings of the 25th international conference on Machine learning, pages 664–671.
ACM, 2008.

[30] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[32] Joris M. Mooij. libDAI: A free and open source C++ library for discrete approximate inference in graphical
models. Journal of Machine Learning Research, 11:2169–2173, August 2010.

[33] Andrew W Moore and Christopher G Atkeson. Prioritized sweeping: Reinforcement learning with less data
and less time. Machine Learning, 13(1):103–130, 1993.

[34] Frans A Oliehoek, Shimon Whiteson, and Matthijs TJ Spaan. Approximate solutions for factored Dec-
POMDPs with many agents. In Proceedings of the 2013 international conference on Autonomous agents
and multi-agent systems, pages 563–570. International Foundation for Autonomous Agents and Multiagent
Systems, 2013.

[35] Anurag Pande and Brian Wolshon. The Institute of Transportation Engineers, Traffic Engineering Hand-
book. Wiley Online Library, 2016.

[36] Theodore J Perkins and Doina Precup. A convergent form of approximate policy iteration. In Advances
in neural information processing systems, pages 1595–1602, 2002.

[37] Martin Riedmiller. Neural fitted Q iteration–first experiences with a data efficient neural reinforcement
learning method. In Machine Learning: ECML 2005, pages 317–328. Springer, 2005.

[38] Tobias Rijken. DeepLight: Deep reinforcement learning for signalised traffic control. Master’s thesis,
University College London, United Kingdom, 2015.

[39] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems. University of
Cambridge, Department of Engineering, 1994.

[40] Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. arXiv preprint arXiv:1602.07868, 2016.

[41] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

55

[42] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. ICLR 2016,
2016.

[43] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of Go
with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

[44] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,
15(1):1929–1958, 2014.

[45] Ilya Sutskever, James Martens, George E Dahl, and Geoffrey E Hinton. On the importance of initialization
and momentum in deep learning. ICML (3), 28:1139–1147, 2013.

[46] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In
Advances in neural information processing systems, pages 3104–3112, 2014.

[47] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 1998.

[48] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan Aru,
and Raul Vicente. Multiagent cooperation and competition with deep reinforcement learning. arXiv
preprint arXiv:1511.08779, 2015.

[49] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(Jul):1633–1685, 2009.

[50] Thomas L Thorpe. Vehicle traffic light control using SARSA. In Online]. Available: citeseer. ist. psu.
edu/thorpe97vehicle. html. Citeseer, 1997.

[51] Sebastian Thrun and Anton Schwartz. Issues in using function approximation for reinforcement learning.
In Proceedings of the 1993 Connectionist Models Summer School Hillsdale, NJ. Lawrence Erlbaum, 1993.

[52] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-RMSProp: Divide the gradient by a running average
of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4(2), 2012.

[53] John N Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference learning with function ap-
proximation. IEEE transactions on automatic control, 42(5):674–690, 1997.

[54] Hado van Hasselt. Double Q-learning. In Advances in Neural Information Processing Systems, pages
2613–2621, 2010.

[55] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double Q-learning.
CoRR, abs/1509.06461, 2015.

[56] K Vinotha. Bellman equation in dynamic programming.

[57] Nikos Vlassis. A concise introduction to multiagent systems and distributed artificial intelligence, volume 1.
Morgan & Claypool Publishers, 2007.

[58] Nikos Vlassis, Reinoud Elhorst, and Jelle R Kok. Anytime algorithms for multiagent decision making using
coordination graphs. In Systems, Man and Cybernetics, 2004 IEEE International Conference on, volume 1,
pages 953–957. IEEE, 2004.

[59] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

[60] Marco Wiering et al. Multi-agent reinforcement learning for traffic light control. In ICML, pages 1151–1158,
2000.

56

	Introduction
	Research Questions and Contributions
	Outline

	Deep Reinforcement Learning
	Markov Decision Processes
	Partial Observability

	Tabular Q-learning
	Q-learning with Function Approximation
	Convergence Issues
	High Correlation Between Samples
	Non-stationary Data Distribution
	Moving Targets
	Convergence Conditions for Reinforcement Learning with Function Approximation

	Deep Learning
	Neural Networks
	Optimization Algorithms
	Batch Normalization
	Convolutional networks

	Deep Reinforcement Learning
	Alleviating Convergence Issues
	Experience Replay
	Freezing Target Network
	Double Q-learning

	Deep Reinforcement Learning for Traffic Light Control
	Traffic Light Control
	State Representations
	Linear Agent
	Deep Q-learning Agent
	Yellow Times

	Action Space
	Reward Function
	Single agent scenario

	Single Agent Experiments
	Reward Function
	Demand Data
	Baseline
	Deep Q-learning Agent
	Stability Issues
	Network Architectures
	Learning rate
	Optimization Algorithms
	Batch Normalization
	Prioritized Experience Replay
	Double Q-learning
	Freeze Interval
	Experience Replay Memory Size
	State Representations

	Fine-tuned Deep Q-learning Agent

	Multi-Agent Reinforcement Learning
	Coordination in Multi-Agent Systems
	Coordination Graphs
	Coordination Algorithms
	Variable Elimination
	Max-Plus

	Sequential Decision Making with Coordination
	Transfer Planning

	Deep Multi-Agent Reinforcement Learning for Coordination in Traffic Light Control
	Multi-Agent Scenarios
	Transfer Planning

	Multi-Agent Experiments
	Baseline
	Two-Agent Scenario
	Three-Agent Scenario
	Four-Agent Scenario

	Related work
	Deep Reinforcement Learning and Coordination
	Traffic Light Control

	Discussion
	Conclusion
	Future work

