
Elise van der Pol

Symmetry and Structure
in

Deep Reinforcement Learning

Universiteit van Amsterdam

This book was typeset by the author using LATEX and the Tufte ebook
template. The cover was designed by the author in Inkscape, adapted
from a generated image.

Printing: www.proefschriftmaken.nl.

Copyright © 2023 Elise van der Pol
ISBN: 978-94-6469-413-0

Symmetry and Structure in Deep Reinforcement Learning

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. ir. P.P.C.C. Verbeek

ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de Agnietenkapel

op woensdag 12 juli 2023, te 16.00 uur

door Elise Esmeralda van der Pol

geboren te Haarlem

Promotiecommissie

Promotor: prof. dr. M. Welling Universiteit van Amsterdam

Copromotores: dr. H.C. van Hoof Universiteit van Amsterdam
dr. F.A. Oliehoek Technische Universiteit Delft

Overige leden: prof. dr. M. de Rijke Universiteit van Amsterdam
prof. dr. E. Kanoulas Universiteit van Amsterdam
dr. ir. E.J. Bekkers Universiteit van Amsterdam
dr. D. Precup McGill University
prof. dr. J. Peters Technische Universität Darmstadt

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Voor Bibi
and we pour bag after bag

of leaves on the lawn,

waiting for them to leap
onto the bare branches.

— Matt Rasmussen

vii

Contents

1 Introduction 1

1.1 List of Publications 6

Part I Symmetry 9

2 MDP Homomorphic Networks:
Group Symmetries in Reinforcement Learning 11

2.1 Introduction 11

2.2 Background 14

2.3 Method 18

2.4 Experiments 21

2.5 Related Work 25

2.6 Conclusion 26

2.7 Broader Impact Statement 26

Appendices 29

2.A The Symmetrizer 29

2.B Experimental Settings 32

2.C Breakout Experiments 39

2.D Cartpole-v1 Deeper Network Results 40

2.E Bellman Equations 40

3 Multi-Agent MDP Homomorphic Networks 41

3.1 Introduction 41

viii

3.2 Related Work 43

3.3 Background 44

3.4 Distributing Symmetries over Multiple Agents 45

3.5 Experiments 52

3.6 E(3) Equivariance 55

3.7 Conclusion 56

3.8 Ethics Statement 57

3.9 Reproducibility Statement 57

Appendices 59

3.A Message Passing Networks, Communication, and Distribution 59

3.B Equivariance of Proposed Message Passing Layers 60

3.C Discrete Rotations of Continuous Vectors 61

3.D Experimental Details 61

3.E Architectural details 62

Part II Structure 69

4 Plannable Approximations to MDP Homomorphisms 71

4.1 Introduction 71

4.2 Background 73

4.3 Learning MDP Homomorphisms 75

4.4 Experiments 80

4.5 Related Work 88

4.6 Relation to Group Equivariance 89

4.7 Conclusion 89

5 Learning Factored Representations of Markov Decision Processes 91

5.1 Introduction 91

5.2 Background 93

5.3 Structured World Models 93

5.4 Transition Model 95

5.5 Related Work 96

5.6 Experiments 97

5.7 Conclusions 101

ix

6 Conclusion 103

7 Acknowledgments 109

8 Summary 131

9 Samenvatting - Dutch Summary 133

1

1
Introduction

2

Symmetry and structure are everywhere in the world. When we walk,
the movement of our right leg mirrors that of our left leg. When
molecules are rotated, their molecular properties are unchanged. When
we navigate to a destination, we take the connectivity of different road
segments into account. When we talk, we can string words together to
form completely novel sentences. In every day life, we use information
about the symmetry and structure of our tasks to guide our decision
making.

In Artificial Intelligence, symmetries and structure are also ubiquitous.
Consider a robot that mirrors its left and right leg movements during
locomotion, automated chip design, a drone swarm tracking wildlife
movement, a bot playing Atari Pong where the top and bottom part
of the screen are reflections of each other, molecular design, a com-
puter player considering rotated board states in the game of Go, and
autonomous vehicles switching from the right side of the road in the
Netherlands to the left side of the road in the UK. These are all exam-
ples of tasks within AI that exhibit some form of symmetry or struc-
ture. Leveraging knowledge of inherent symmetry and structure is an
important step towards building systems that scale.

Reinforcement learning is a fundamental field of study in Artificial In-
telligence that encourages artificial agents to learn from positive and
negative feedback signals, which we call rewards. By trial-and-error,
the agent can learn to associate situations, actions, and feedback in
order to improve its decisions. For example, we can give a robot a
positive reward for walking fast and a negative reward for falling over.
Similarly, we can give a computer player a positive reward for winning
a game, and a negative reward for losing a game, or give a positive re-
ward to an agent that proposes a particularly efficient chip design.
Using concepts from the field of reinforcement learning, we can for-
malize the examples above in order to propose approaches that lead to
good decision making from an agent. In deep reinforcement learning, an
agent uses neural networks to decide on which action to take, where
the neural networks are adapted to the task using the received reward
signals. However, even tasks that require intelligence far below human
capabilities can present issues to artificial decision makers. Consider
any vision-based control system acting in the real world. The agent re-
ceives observations as camera input, and has to learn the best action to
take. The number of possible observations is prohibitively large, and it
is unlikely that the agent will encounter two states that are exactly the
same. As such, we would like to the agent to be able to re-use expe-
rience from earlier states to take good decisions in unseen states with
similar characteristics. For example, when deciding how to move its

3

left leg, the agent should mirror the movements it learned for moving
its right leg.

The examples above are a few of the cases where symmetry and struc-
ture appear in reinforcement learning problems. These can be formal-
ized by considering when taking an action in a state is equivalent to
taking another action in another state. In this thesis, we will study how
we can use symmetry and structure in reinforcement learning when it
is known, and how we can extract it if it is not.

An agent should not learn what is already known. Whether knowl-
edge is provided by a system designer as prior knowledge or obtained
by the agent itself through generalization should depend on the con-
text of the problem. By properly re-using knowledge, we can reduce
the number of times the agent needs to interact with the world, an
essential part of scaling to real world settings. In this thesis, we will
particularly look at symmetry and structure in reinforcement learning.
As such, our main research question is:

Main Research Question: How can we incorporate and extract
symmetry and structure in reinforcement learning?

We first consider the case where there is an obvious symmetry in the
problem we are trying to solve. Many problems exhibit symmetry,
since symmetry is a natural part of the physical world. To illustrate,
consider the classic pole balancing task. In pole balancing, the agent
controls a cart that can move left or right. Her goal is to move the cart
left and right to ensure that a pole standing upright on the cart does
not fall down. It does not matter if the pole is currently leaning to the
left, and the car is moving right, or the pole is leaning right and the
cart is moving left. Both cases are mirrored versions of the same un-
derlying situation. An agent moving east to reach a goal on the east,
or north to reach a goal in the north, are also two very similar situa-
tions. These problems and those mentioned above have something in
common: they exhibit equivalences between different pairs of states
and actions. The beauty of state-action equivalence is that it allows us
to consider similarity between taking one action in one state and tak-
ing another action in another state. This is what allows us to express
symmetry in reinforcement learning problems. In Chapter 2 we con-
sider the problem of constraining the class of neural network policies
to only those that are symmetric under certain transformations, and
answer the first research question:

4

Research Question 1: How can we leverage knowledge of symmetries
in deep reinforcement learning?

Our main contribution in Chapter 2 is proposing MDP Homomorphic
Networks, a class of neural networks that incorporate reinforcement
learning symmetries into neural networks. This approach bridges
deep reinforcement learning and equivariant networks, and shows a
substantial improvement in data efficiency compared to unstructured
baselines. Additionally, we propose a new method for constructing
equivariant neural network weights.

After considering the case of symmetric reinforcement learning tasks,
we investigate the use of similar methods in a more complex setting:
that of distributed cooperative multi-agent systems. In such settings,
the task at hand must be solved by agents taking local actions and
communicating locally with each other. In Chapter 3 we answer the
second research question:

Research Question 2. How can we leverage knowledge of global
symmetries in distributed cooperative multi-agent systems?

A straightforward approach to this problem would be a naive applica-
tion of single agent approaches to symmetry in reinforcement learning.
However, such a method would prohibit us from using distributed exe-
cution methods. Instead, we propose an equivariant distributed policy
network that allows the policy to be distributed at execution time, re-
quiring only local communication and computation to ensure global
symmetries. This approach results in improved data efficiency in sym-
metric cooperative multi-agent problems.

In the second part of this thesis, we consider that there is usually some
underlying structure in the unstructured information we receive. For
example, objects of the same type tend to behave similarly when force
is applied to them. Similarly, there are dynamics underlying a sim-
ple pole balancing system. An agent may observe only feature vec-
tors, and not the equations governing the system. Finally, the space
of possible images of 3× 48× 48 pixels is significantly larger than the
number of states in a simple grid world. However, an agent does not
a priori know the number of possible actual states. It only knows that
it receives images of a certain size. In the second part of this thesis,
we consider how to extract structure from interaction data. First, in
Chapter 4, we consider the problem of learning representations of de-
cision making problems that are plannable. By plannable, we mean

5

that if we run standard planning algorithms on the graph of learned
representations, we get good decision making strategies for the orig-
inal problem. In practice, this means that we want the dynamics of
the transition function in the original problem to be mirrored by the
dynamics of the latent transition function. Our 3rd research question
is therefore:

Research Question 3. How can we learn representations of the world
that capture the structure of the environment?

In Chapter 4, we take cues from the equivariance literature [34, 193,
187] and contrastive learning [135, 94] to learn the abstract graph un-
derlying a decision making problem. Noting that the effect of an action
in the decision making problem should be matched by the effect on the
abstract graph, we learn representations of the original problem and
show that they are indeed plannable for a variety of problems, includ-
ing continuous state spaces, and generalizing to unseen objects and
goals. This action-equivariant planning approach results in improved
data efficiency compared to model-free baselines and reconstruction
baselines.

In Chapter 5, we consider a further structure in the problem: if we have
a set of objects that can be acted upon individually, each state is itself
structured. If we can recover the individual objects and a factored
transition function from pixel observations, this can improve predic-
tion and generalization. As such, our 4th research question is:

Research Question 4. How can we learn representations of the world
that capture the structure in individual states?

In Chapter 5 we show that it is possible to find object-oriented repre-
sentations from pixels based on factored actions and a fixed dataset of
interactions. We propose an approach that uses contrastive learning
on environment interaction samples, resulting in a structured repre-
sentation that leverages a graph neural network transition function.
The approach we propose improves prediction performance in latent
space compared to unstructured and reconstruction baselines.

In this thesis, we explore symmetry and structure in deep reinforce-
ment learning. We leverage prior knowledge of symmetries in single
agent and multi-agent systems in Chapters 2- 3, and extract structure
from interactions with the world in Chapters 4-5. We will conclude in

6

Chapter 6 and provide suggestions for future work.

1.1 List of Publications

The following publications form the basis of this thesis:

• Elise van der Pol, Thomas Kipf, Frans A. Oliehoek, Max Welling
(2020). "Plannable Approximations to MDP Homomorphisms: Equiv-
ariance under Actions." In: International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS) [170]. Chapter 4.

• Elise van der Pol, Daniel E. Worrall, Herke van Hoof, Frans A.
Oliehoek, Max Welling (2020). "MDP Homomorphic Networks:
Group Symmetries in Reinforcement Learning." In: Advances in
Neural Information Processing Systems (NeurIPS) [173]. Chapter 2.

• Elise van der Pol, Herke van Hoof, Frans A. Oliehoek, Max Welling
(2021). "Multi-Agent MDP Homomorphic Networks." In: Interna-
tional Conference on Learning Representations (ICLR) [172]. Chap-
ter 3.

• Thomas Kipf, Elise van der Pol, Max Welling (2019). "Contrastive
Learning of Structured World Models." In: International Conference
on Learning Representations (ICLR) [94]. Chapter 5.

• Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J.
Bekkers, Max Welling (2021). "Geometric and Physical Quantities
improve E(3) Equivariant Message Passing." In: International Con-
ference on Learning Representations (ICLR) [23]. Chapter 3.

I have contributed in all aspects to all first author publications listed.
Max Welling, Frans Oliehoek, and Herke van Hoof provided supervi-
sion, guidance, insight, and technical advice. In "MDP Homomorphic
Networks: Group Symmetries in Reinforcement Learning." Daniel Wor-
rall proposed the Symmetrizer, which was implemented by us jointly.
In "Contrastive Learning of Structured World Models." Thomas Kipf
contributed in all aspects. I provided reinforcement learning insights,
proposed the use of action factorization and the evaluation method,
and ran baseline experiments. Figures and tables reproduced with per-
mission. In "Geometric and Physical Quantities improve E(3) Equivari-
ant Message Passing.", Johannes Brandstetter, Rob Hesselink, and Erik
Bekkers contributed in all aspects. I provided the original architectural

7

idea and took an advisory role. Figures reproduced with permission.

I have further contributed to:

• Tejaswi Kasarla, Gertjan J. Burghouts, Max van Spengler, Elise van
der Pol, Rita Cucchiara, Pascal Mettes (2022). "Maximum Class Sep-
aration as Inductive Bias in One Matrix." Accepted to: Neural Infor-
mation Processing Systems (NeurIPS) [87].

• Darius Muglich, Christian Schroeder de Witt, Elise van der Pol,
Shimon Whiteson, Jakob Foerster (2022). "Equivariant Networks for
Zero-Shot Coordination." Accepted to: Neural Information Process-
ing Systems (NeurIPS).

• Elise van der Pol, Ian Gemp, Yoram Bachrach, Richard Everett
(2022). "Stochastic Parallelizable Eigengap Dilation for Large Graph
Clustering". In: ICML 2022 Workshop on Topology, Algebra, and
Geometry in Machine Learning [169].

• Pascal Mettes, Elise van der Pol, Cees G.M. Snoek (2019). "Hyper-
spherical Prototype Networks." In: Advances in Neural Information
Processing Systems (NeurIPS) [120].

• Ondrej Biza, Elise van der Pol, Thomas Kipf (2021). "The Impact
of Negative Sampling on Contrastive Structured World Models." In:
ICML Workshop on Self-Supervised Learning for Reasoning and
Perception [17].

• Laurens Weitkamp, Elise van der Pol, Zeynep Akata (2018). "Visual
Rationalizations in Deep Reinforcement Learning for Atari Games."
In: Benelux Conference on Artificial intelligence (BNAIC) [190].

• Frans A. Oliehoek, Rahul Savani, Jose Gallego-Posada, Elise van
der Pol, Roderich Groß (2018). "Beyond Local Nash Equilibria for
Adversarial Networks." In: Annual Machine Learning Conference
of Belgium and the Netherlands (Benelearn) [134].

9

Part I

Symmetry

11

2
MDP Homomorphic Networks:
Group Symmetries in
Reinforcement Learning

2.1 Introduction

This part of the dissertation leverages knowledge of symmetries in sin-
gle and multi-agent reinforcement learning problems. In this Chapter,
we propose MDP homomorphic networks, which enforce symmetries
in reinforcement learning problems. In the following chapter we take
this approach beyond single-agent symmetries.

This chapter introduces MDP homomorphic networks for deep rein-
forcement learning. MDP homomorphic networks are neural networks
that are equivariant under symmetries in the joint state-action space of
an MDP. Current approaches to deep reinforcement learning do not
usually exploit knowledge about such structure. By building this prior
knowledge into policy and value networks using an equivariance con-
straint, we can reduce the size of the solution space. We specifically fo-
cus on group-structured symmetries (invertible transformations). Ad-
ditionally, we introduce an easy method for constructing equivariant
network layers numerically, so the system designer need not solve the
equivariance constraints by hand, as is typically done. We construct
MDP homomorphic MLPs and CNNs that are equivariant under ei-

12

ther a group of reflections or rotations. We show that such networks
converge faster than unstructured baselines on CartPole, a grid world
and Pong.

This chapter considers learning decision-making systems that exploit
symmetries in the structure of the world. Deep reinforcement learning
(DRL) is concerned with learning neural function approximators for
decision making strategies. While DRL algorithms have been shown
to solve complex, high-dimensional problems [156, 153, 125, 124], they
are often used in problems with large state-action spaces, and thus
require many samples before convergence. Many tasks exhibit sym-
metries, easily recognized by a designer of a reinforcement learning
system. Consider the classic control task of balancing a pole on a cart.
Balancing a pole that falls to the right requires an equivalent, but mir-
rored, strategy to one that falls to the left. See Figure 2.1. In this
chapter, we exploit knowledge of such symmetries in the state-action
space of Markov decision processes (MDPs) to reduce the size of the
solution space.

We use the notion of MDP homomorphisms [143, 141] to formalize these
symmetries. Intuitively, an MDP homomorphism is a map between
MDPs, preserving the essential structure of the original MDP, while
removing redundancies in the problem description, i.e., equivalent
state-action pairs. The removal of these redundancies results in a
smaller state-action space, upon which we may more easily build a
policy. While earlier work has been concerned with discovering an
MDP homomorphism for a given MDP [143, 141, 127, 142, 16, 170],
we are instead concerned with how to construct deep policies, satisfy-
ing the MDP homomorphism. We call these models MDP homomorphic
networks.

MDP homomorphic networks use experience from one state-action
pair to improve the policy for all ‘equivalent’ pairs. See Section 2.2
for a definition. They do this by tying the weights for two states if
they are equivalent under a transformation chosen by the designer,
such as s and L[s] in Figure 2.1.

Such weight-tying follows a similar principle to the use of convo-
lutional networks [109], which are equivariant to translations of the
input [34]. In particular, when equivalent state-action pairs can be
related by an invertible transformation, which we refer to as group-
structured, we show that the policy network belongs to the class of
group-equivariant neural networks [34, 193]. Equivariant neural networks
are a class of neural network, which have built-in symmetries [34,

13

Figure 2.1: Example state-action
space symmetry, where L is a
horizontal reflection. The pairs
(s,←) and (L[s],→) (and by ex-
tension (s,→) and (L[s],←)) are
symmetric under a horizontal
flip. Constraining the set of poli-
cies to those where π(s,←) =

π(L[s],→) reduces the size of
the solution space.

35, 193, 188, 186]. They are a generalization of convolutional neu-
ral networks—which exhibit translation symmetry—to transformation
groups (group-structured equivariance) and transformation semigroups
[194] (semigroup-structured equivariance). They have been shown to
reduce sample complexity for classification tasks [193, 191] and also to
be universal approximators of symmetric functions1 [198]. We borrow

1 Specifically group equivariant net-
works are universal approximators to
functions symmetric under linear repre-
sentations of compact groups.

from the literature on group equivariant networks to design policies
that tie weights for state-action pairs given their equivalence classes,
with the goal of reducing the number of samples needed to find good
policies. Furthermore, we can use the MDP homomorphism property
to design not just policy networks, but also value networks and even
environment models. MDP homomorphic networks are agnostic to the
type of model-free DRL algorithm, as long as an appropriate transfor-
mation on the output is given. In this chapter we focus on equivariant
policy and invariant value networks. See Figure 2.1 for an example
policy.

An additional contribution of this chapter is a novel numerical way
of finding equivariant layers for arbitrary transformation groups. The
design of equivariant networks imposes a system of linear constraint
equations on the linear/convolutional layers [35, 34, 193, 188]. Solving
these equations has typically been done analytically by hand, which
is a time-consuming and intricate process, barring rapid prototyp-
ing. Rather than requiring analytical derivation, our method only re-
quires that the system designer specify input and output transforma-
tion groups of the form {state transformation, policy transformation}.

14

We provide Pytorch [138] implementations of our equivariant network
layers, and implementations of the transformations used in this chap-
ter. We also experimentally demonstrate that exploiting equivalences
in MDPs leads to faster learning of policies for DRL.

Our contributions are two-fold:

• We draw a connection between MDP homomorphisms and group
equivariant networks, proposing MDP homomorphic networks to
exploit symmetries in decision-making problems;

• We introduce a numerical algorithm for the automated construction
of equivariant layers.

2.2 Background

Here we outline the basics of the theory behind MDP homomorphisms
and equivariance. We begin with a brief outline of the concepts of
equivalence, invariance, and equivariance, followed by a review of the
Markov decision process (MDP). We then review the MDP homomor-
phism, which builds a map between ‘equivalent’ MDPs.

Equivalence, Invariance, and Equivariance

Equivalence If a function f : X → Y maps two inputs x, x′ ∈ X
to the same value, that is f (x) = f (x′), then we say that x and x′

are f -equivalent. For instance, two states s, s′ leading to the same
optimal value V∗(s) = V∗(s′) would be V∗-equivalent or optimal value
equivalent [141]. An example of two optimal value equivalent states
would be states s and L[s] in the CartPole example of Figure 2.1. The
set of all points f -equivalent to x is called the equivalence class of x.

Groups A group (G, ·) is a set G, together with a binary operator ·,
which is closed, i.e. ∀g1, g2 ∈ G, g1 · g2 ∈ G. The group (G, ·) obeys
the group axioms:

• Associativity: For all g1, g2, g3 ∈ G, (g1 · g2) · g3 = g1 · (g2 · g3);

• Identity: There is an element e ∈ G such that for all g1 ∈ G, e · g1 =

g1 · e = g1;

• Invertibility: For all g1 ∈ G, there exists an element g−1
1 ∈ G such

15

that g1 · g−1
1 = g−1

1 · g1 = e.

Invariance and Symmetries Typically there exist very intuitive rela-
tionships between the points in an equivalence class. In the Cart-
Pole example of Figure 2.1 this relationship is a horizontal flip about
the vertical axis. This is formalized with the transformation operator
Lg : X → X , where g ∈ G and G is a mathematical group. If Lg

satisfies

f (x) = f (Lg[x]), for all g ∈ G, x ∈ X , (2.1)

then we say that f is invariant or symmetric to Lg and that {Lg}g∈G is a
set of symmetries of f . We can see that for the invariance equation to be
satisfied, it must be that Lg can only map x to points in its equivalence
class. Note that in abstract algebra for Lg to be a true transformation
operator, G must contain an identity operation; that is Lg[x] = x for
some g and all x. An interesting property of transformation operators
which leave f invariant, is that they can be composed and still leave
f invariant, so Lg ◦ Lh is also a symmetry of f for all g, h ∈ G. In
abstract algebra, this property is known as a semigroup property. If
Lg is always invertible, this is called a group property. In this work, we
experiment with group-structured transformation operators. For more
information, see [42]. Another helpful concept is that of orbits. If f is
invariant to Lg, then it is invariant along the orbits of G. The orbit
Ox of point x is the set of points reachable from x via transformation
operator Lg:

Ox , {Lg[x] ∈ X |g ∈ G}. (2.2)

Equivariance A related notion to invariance is equivariance. Given a
transformation operator Lg : X → X and a mapping f : X → Y , we
say that f is equivariant [34, 193] to the transformation if there exists
a second transformation operator Kg : Y → Y in the output space of f
such that

Kg[f (x)] = f (Lg[x]), for all g ∈ G, x ∈ X . (2.3)

The operators Lg and Kg can be seen to describe the same transforma-
tion, but in different spaces. In fact, an equivariant map can be seen
to map orbits to orbits. We also see that invariance is a special case
of equivariance, if we set Kg to the identity operator for all g. Given
Lg and Kg, we can solve for the collection of equivariant functions f
satisfying the equivariance constraint. Moreover, for linear transfor-
mation operators and linear f a rich theory already exists in which
f is referred to as an intertwiner [35]. In the equivariant deep learn-
ing literature, neural networks are built from interleaving intertwiners

16

and equivariant nonlinearities. As far as we are aware, most of these
methods are hand-designed per pair of transformation operators, with
the exception of [40]. In this chapter, we introduce a computational
method to solve for intertwiners given a pair of transformation opera-
tors.

Markov Decision Processes

A Markov decision process (MDP) is a tuple (S ,A, R, T, γ), with state
space S , action space A, immediate reward function R : S ×A → R, tran-
sition function T : S ×A× S → R≥0, and discount factor γ ∈ [0, 1]. The
goal of solving an MDP is to find a policy π ∈ Π, π : S × A → R≥0

(written π(a|s)), where π normalizes to unity over the action space,
that maximizes the expected return Rt = Eπ [∑T

k=0 γkrt+k+1]. The ex-
pected return from a state s under a policy π is given by the value
function Vπ . A related object is the Q-value Qπ , the expected return
from a state s after taking action a under π. Vπ and Qπ are governed
by the well-known Bellman equations [15] (see Supplementary). In an
MDP, optimal policies π∗ attain an optimal value V∗ and correspond-
ing Q-value given by V∗(s) = max

π∈Π
Vπ(s) and Q∗(s) = max

π∈Π
Qπ(s).

Figure 2.2: Example of a re-
duction in an MDP’s state-action
space under an MDP homomor-
phism h. Here ‘equivalence’
is represented by a reflection
of the dynamics in the vertical
axis. This equivalence class is
encoded by h by mapping all
equivalent state-action pairs to
the same abstract state-actions.

MDP with Symmetries Symmetries can appear in MDPs. For instance,
in Figure 2.2 CartPole has a reflection symmetry about the vertical axis.
Here we define an MDP with symmetries. In an MDP with symmetries
there is a set of transformations on the state-action space, which leaves
the reward function and transition operator invariant. We define a
state transformation and a state-dependent action transformation as
Lg : S → S and Ks

g : A → A respectively. Invariance of the reward
function and transition function is then characterized as

R(s, a) = R(Lg[s], Ks
g[a]) for all g ∈ G, s ∈ S , a ∈ A (2.4)

T(s′|s, a) = T(Lg[s′]|Lg[s], Ks
g[a]) for all g ∈ G, s ∈ S , a ∈ A. (2.5)

Written like this, we see that in an MDP with symmetries the reward
function and transition operator are invariant along orbits defined by
the transformations (Lg, Ks

g).

MDP Homomorphisms MDPs with symmetries are closely related to
MDP homomorphisms, as we explain below. First we define the lat-

17

ter. An MDP homomorphism h [143, 141] is a mapping from one MDP
M = (S ,A, R, T, γ) to another M̄ = (S̄ , Ā, R̄, T̄, γ) defined by a sur-
jective map from the state-action space S ×A to an abstract state-action
space S̄ × Ā. In particular, h consists of a tuple of surjective maps
(σ, {αs|s ∈ S}), where we have the state map σ : S → S̄ and the state-
dependent action map αs : A → Ā. These maps are built to satisfy the
following conditions

R̄(σ(s), αs(a)) , R(s, a) for all s ∈ S , a ∈ A,

(2.6)

T̄(σ(s′)|σ(s), αs(a)) , ∑
s′′∈σ−1(s′)

T(s′′|s, a) for all s, s′ ∈ S , a ∈ A.

(2.7)

An exact MDP homomorphism provides a model equivalence abstrac-
tion [113]. Given an MDP homomorphism h, two state-action pairs
(s, a) and (s′, a′) are called h-equivalent if σ(s) = σ(s′) and αs(a) =

αs′(a′). Symmetries and MDP homomorphisms are connected in a
natural way: If an MDP has symmetries Lg and Kg, the above equa-
tions 2.4 and 2.5 hold. This means that we can define a corresponding
MDP homomorphism, which we define next.

Group-structured MDP Homomorphisms Specifically, for an MDP with
symmetries, we can define an abstract state-action space, by map-
ping (s, a) pairs to (a representative point of) their equivalence class
(σ(s), αs(a)). That is, state-action pairs and their transformed version
are mapped to the same abstract state in the reduced MDP:

(σ(s), αs(a)) =
(

σ(Lg[s]), αLg [s](K
s
g[a])

)
∀g ∈ G, s ∈ S , a ∈ A (2.8)

In this case, we call the resulting MDP homomorphism group struc-
tured. In other words, all the state-action pairs in an orbit defined by
a group transformation are mapped to the same abstract state by a
group-structured MDP homomorphism.

Optimal Value Equivalence and Lifted Policies h-equivalent state-
action pairs share the same optimal Q-value and optimal value func-
tion [141]. There exists an abstract optimal Q-value Q̄∗ and abstract
optimal value function V̄∗, such that Q∗(s, a) = Q̄∗(σ(s), αs(a)) and
V∗(s) = V̄∗(σ(s)). This is known as optimal value equivalence [141].
Policies can thus be optimized in the simpler abstract MDP. The opti-
mal abstract policy π̄(ā|σ(s)) can then be pulled back to the original
MDP using a procedure called lifting 2. The lifted policy is given in

2 Note that we use the terminology lifting
to stay consistent with [141].

Equation 2.9. A lifted optimal abstract policy is also an optimal policy

18

in the original MDP [141]. Note that while other lifted policies ex-
ist, we follow [141, 143] and choose the lifting that divides probability
mass uniformly over the preimage:

π↑(a|s) , π̄(ā|σ(s))
|{a ∈ α−1

s (ā)}|
, for any s ∈ S and a ∈ α−1

s (ā). (2.9)

2.3 Method

The focus of the next section is on the design of MDP homomorphic
networks—policy networks and value networks obeying the MDP ho-
momorphism. In the first section of the method, we show that any pol-
icy network satisfying the MDP homomorphism property must be an
equivariant neural network. In the second part of the method, we in-
troduce a novel numerical technique for constructing group-equivariant
networks, based on the transformation operators defining the equiva-
lence state-action pairs under the MDP homomorphism.

Lifted Policies Are Invariant

Lifted policies in symmetric MDPs with group-structured symmetries
are invariant under the group of symmetries. Consider the following:
Take an MDP with symmetries defined by transformation operators
(Lg, Ks

g) for g ∈ G. Now, if we take s′ = Lg[s] and a′ = Ks
g[a] for

any g ∈ G, (s′, a′) and (s, a) are h-equivalent under the corresponding
MDP homomorphism h = (σ, {αs|s ∈ S}). So

π↑(a|s) = π̄(αs(a)|σ(s))
|{a ∈ α−1

s (ā)}|
=

π̄(αs′(a′)|σ(s′))
|{a′ ∈ α−1

s′ (ā)}|
= π↑(a′|s′), (2.10)

for all s ∈ S , a ∈ A and g ∈ G. In the first equality we have used
the definition of the lifted policy. In the second equality, we have used
the definition of h-equivalent state-action pairs, where σ(s) = σ(Lg(s))
and αs(a) = αs′(a′). In the third equality, we have reused the definition
of the lifted policy. Thus we see that, written in this way, the lifted pol-
icy is invariant under state-action transformations (Lg, Ks

g). This equa-
tion is very general and applies for all group-structured state-action
transformations. For a finite action space, this statement of invariance
can be re-expressed as a statement of equivariance, by considering the
vectorized policy.

Invariant Policies On Finite Action Spaces Are Equivariant Vector-
ized Policies For convenience we introduce a vector of probabilities

19

for each of the discrete actions under the policy

π(s) ,
[
π(a1|s), π(a2|s), ..., π(aN |s)

]>
, (2.11)

where a1, ..., aN are the N possible discrete actions in action space A.
The action transformation Ks

g maps actions to actions invertibly. Thus
applying an action transformation to the vectorized policy permutes
the elements. We write the corresponding permutation matrix as Kg.
Note that

K−1
g π(s) ,

[
π(Ks

g[a1]|s), π(Ks
g[a2]|s), ..., π(Ks

g[aN]|s)
]>

, (2.12)

where writing the inverse K−1
g instead of Kg is required to maintain

the property KgKh = Kgh. The invariance of the lifted policy can then
be written as π↑(s) = K−1

g π↑(Lg[s]), which can be rearranged to the
equivariance equation

Kgπ↑(s) = π↑(Lg[s]) for all g ∈ G, s ∈ S , a ∈ A. (2.13)

This equation shows that the lifted policy must satisfy an equivariance
constraint. In deep learning, this has already been well-explored in the
context of supervised learning [34, 35, 193, 194, 188]. Next, we present
a novel way to construct such networks.

Building MDP Homomorphic Networks

Our goal is to build neural networks that follow Eq. 2.13; that is, we
wish to find neural networks that are equivariant under a set of state
and policy transformations. Equivariant networks are common in su-
pervised learning [34, 35, 193, 194, 188, 186]. For instance, in semantic
segmentation shifts and rotations of the input image result in shifts
and rotations in the segmentation. A neural network consisting of
only equivariant layers and non-linearities is equivariant as a whole,
too3 [34]. Thus, once we know how to build a single equivariant layer,

3 See Appendix 2.B for more details.we can simply stack such layers together. Note that this is true re-
gardless of the representation of the group, i.e. this works for spatial
transformations of the input, feature map permutations in interme-
diate layers, and policy transformations in the output layer. For the
experiments presented in this chapter, we use the same group repre-
sentations for the intermediate layers as for the output, i.e. permuta-
tions. For finite groups, such as cyclic groups or permutations, point-
wise nonlinearities preserve equivariance [34], allowing the use of e.g.
rectified linear units without losing equivariance.

In the past, learnable equivariant layers were designed by hand for
each transformation group individually [34, 35, 193, 194, 191, 188, 186].

20

This is time-consuming and laborious. Here we present a novel way
to build learnable linear layers that satisfy equivariance automatically.

Equivariant Layers We begin with a single linear layer z′ = Wz +

b, where W ∈ RDout×Din and b ∈ RDout is a bias. To simplify the
math, we merge the bias into the weights so W 7→ [W, b] and z 7→
[z, 1]>. We denote the space of the augmented weights as Wtotal. For
a given pair of linear group transformation operators in matrix form
(Lg, Kg), where Lg is the input transformation and Kg is the output
transformation, we then have to solve the equation

KgWz = WLgz, for all g ∈ G, z ∈ RDin+1. (2.14)

Since this equation is true for all z we can in fact drop z entirely. Our
task now is to find all weights W which satisfy Equation 2.14. We label
this space of equivariant weights asW , defined as

W , {W ∈ Wtotal | KgW = WLg, for all g ∈ G}, (2.15)

again noting that we have dropped z. To find the space W notice that
for each g ∈ G the constraint KgW = WLg is in fact linear in W. Thus,
to find W we need to solve a set of linear equations in W. For this
we introduce a construction, which we call a symmetrizer S(W). The
symmetrizer is

S(W) ,
1
|G| ∑

g∈G
K−1

g WLg. (2.16)

S has three important properties, of which proofs are provided in Ap-
pendix A. First, S(W) is symmetric (S(W) ∈ W). Second, S fixes any
symmetric W: (W ∈ W =⇒ S(W) = W). Third, S is idempotent,
S(S(W)) = S(W). These properties show that S projects arbitrary
W ∈ Wtotal to the equivariant subspaceW .

Since W is the solution set for a set of simultaneous linear equa-
tions, W is a linear subspace of the space of all possible weights

Algorithm 1: Equivariant layer construction
1: Sample N weight matrices W1, W2, ..., WN ∼ N (W; 0, I) for N ≥

dim(Wtotal)

2: Symmetrize samples: W̄i = S(Wi) for i = 1, ..., N
3: Vectorize samples and stack as W̄ = [vec(W̄1), vec(W̄2), ...]
4: Apply SVD: W̄ = UΣV>

5: Keep first r = rank(W̄) right-singular vectors (columns of V) and
unvectorize to shape of Wi

21

Wtotal. Thus each W ∈ W can be parametrized as a linear combina-
tion of basis weights {Vi}r

i=1, where r is the rank of the subspace and
span({Vi}r

i=1) = W . To find as basis for W, we take a Gram-Schmidt
orthogonalization approach. We first sample weights in the total space
Wtotal and then project them into the equivariant subspace with the
symmetrizer. We do this for multiple weight matrices, which we then
stack and feed through a singular value decomposition to find a basis
for the equivariant space. This procedure is outlined in Algorithm 1.
Any equivariant layer can then be written as a linear combination of
bases

W =
r

∑
i=1

ciVi, (2.17)

where the ci’s are learnable scalar coefficients, r is the rank of the
equivariant space, and the matrices Vi are the basis vectors, formed
from the reshaped right-singular vectors in the SVD. An example is
shown in Figure 2.3. To run this procedure, all that is needed are the

Figure 2.3: Example of 4-way ro-
tationally symmetric filters.

transformation operators Lg and Kg. Note we do not need to know
the explicit transformation matrices, but just to be able to perform the
mappings W 7→ WLg and W 7→ K−1

g W. For instance, some matrix Lg

rotates an image patch, but we could equally implement WLg using a
built-in rotation function. Code is available 4.

4 https://github.com/ElisevanderPol/

symmetrizer/

2.4 Experiments

We evaluated three flavors of MDP homomorphic network—an MLP,
a CNN, and an equivariant feature extractor—on three RL tasks that
exhibit group symmetry: CartPole, a grid world, and Pong. We use
RLPYT [159] for the algorithms. Hyperparameters (and the range con-
sidered), architectures, and group implementation details are in the
Supplementary Material. Code is available 5.

5 https://github.com/ElisevanderPol/

mdp-homomorphic-networks

https://github.com/ElisevanderPol/symmetrizer/
https://github.com/ElisevanderPol/symmetrizer/
https://github.com/ElisevanderPol/mdp-homomorphic-networks
https://github.com/ElisevanderPol/mdp-homomorphic-networks

22

Environment Space Transformations

CartPole S (x, θ, ẋ, θ̇) (x, θ, ẋ, θ̇), (−x,−θ,−ẋ,−θ̇)

A (←,→) (←,→), (→,←)
Grid World S {0, 1}21×21 Identity, y 90◦, y 180◦, y 270◦

A (∅, ↑,→, ↓,←) (∅, ↑,→, ↓,←), (∅,→, ↓,←, ↑), (∅, ↓,←, ↑,→), (∅,←, ↑,→, ↓)
Pong S {0, ..., 255}4×80×80 Identity, reflect

A (∅, ∅, ↑, ↓, ↑, ↓) (∅, ∅, ↑, ↓, ↑, ↓), (∅, ∅, ↓, ↑, ↓, ↑)

Table 2.1: Environments and

Symmetries: We showcase a
visual guide of the state and
action spaces for each environ-
ment along with the effect of the
transformations. Note, the sym-
bols should not be taken to be
hard mathematical statements,
they are merely a visual guide
for communication.

Environments

For each environment we show S and A with respective representa-
tions of the group transformations.

CartPole In the classic pole balancing task [10], we used a two-element
group of reflections about the y-axis. We used OpenAI’s Cartpole-
v1 [24] implementation, which has a 4-dimensional observation vector:
(cart position x, pole angle θ, cart velocity ẋ, pole velocity θ̇). The
(discrete) action space consists of applying a force left and right (←
,→). We chose this example for its simple symmetries.

Grid world We evaluated on a toroidal 7-by-7 predator-prey grid world
with agent-centered coordinates. The prey and predator are randomly
placed at the start of each episode, lasting a maximum of 100 time
steps. The agent’s goal is to catch the prey, which takes a step in a
random compass direction with probability 0.15 and stands still oth-
erwise. Upon catching the prey, the agent receives a reward of +1,
and -0.1 otherwise. The observation is a 21× 21 binary image iden-
tifying the position of the agent in the center and the prey in relative
coordinates. See Figure 2.6a. This environment was chosen due to its
four-fold rotational symmetry.

Pong We evaluated on the RLPYT [159] implementation of Pong. In
our experiments, the observation consisted of the 4 last observed frames,
with upper and lower margins cut off and downscaled to an 80× 80
grayscale image. In this setting, there is a flip symmetry over the hor-
izontal axis: if we flip the observations, the up and down actions also
flip. A curious artifact of Pong is that it has duplicate (up, down)
actions, which means that to simplify matters, we mask out the pol-
icy values for the second pair of (up, down) actions. We chose Pong
because of its higher dimensional state space. Finally, for Pong we
additionally compare to two data augmentation baselines: stochas-
tic data augmentation, where for each state, action pair we randomly
transform them or not before feeding them to the network, and the
second an equivariant version of [99] and similar to [156], where both
state and transformed state are input to the network. The output of
the transformed state is appropriately transformed, and both policies
are averaged.

23

0 20 40 60 80 100 120 140
Time steps (x 500)

0

100

200

300

400

500
Av

er
ag

e
Re

tu
rn

Nullspace
Random
Equivariant

(a) Cartpole-v1: Bases

0 20 40 60 80 100 120 140
Time steps (x 500)

0

100

200

300

400

500

A
v
e
ra

g
e
 R

e
tu

rn

MLP, 4 64 128 2

MLP, 4 128 128 2

Equivariant, 4 64 64 2

(b) Cartpole-v1: MLPs

0 100 200 300 400 500 600
Time steps (x 25000)

20

15

10

5

0

5

10

15

20

Av
er

ag
e

Re
tu

rn

Nullspace
Random
Convolutional
Equivariant

(c) Pong

Figure 2.4: Cartpole: Trained
with PPO, all networks fine-
tuned over 7 learning rates. 25%,
50% and 75% quantiles over 25

random seeds shown. a) Equiv-
ariant, random, and nullspace
bases. b) Equivariant basis, and
two MLPs with different degrees
of freedom. Pong: Trained
with A2C, all networks tuned
over 3 learning rates. 25%,
50% and 75% quantiles over 15

random seeds shown c) Equiv-
ariant, nullspace, and random
bases, and regular CNN for
Pong.

Models

We implemented MDP homomorphic networks on top of two base
architectures: MLP and CNN (exact architectures in Supplementary).
We further experimented with an equivariant feature extractor, ap-
pended by a non-equivariant network, to isolate where equivariance
made the greatest impact.

Basis Networks We call networks whose weights are linear combi-
nations of basis weights basis networks. As an ablation study on all
equivariant networks, we sought to measure the effects of the basis
training dynamics. We compared an equivariant basis against a pure
nullspace basis, i.e. an explicitly non-symmetric basis using the right-
null vectors from the equivariant layer construction, and a random ba-
sis, where we skip the symmetrization step in the layer construction
and use the full rank basis. Unless stated otherwise, we reduce the
number of ‘channels’ in the basis networks compared to the regular
networks by dividing by the square root of the group size, ending up
with a comparable number of trainable parameters.

Results and Discussion

We show training curves for CartPole in Figures 2.4a-b, Pong in Fig-
ure 2.4c and for the grid world in Figure 2.6. Across all experiments
we observed that the MDP homomorphic network outperforms both
the non-equivariant basis networks and the standard architectures, in
terms of convergence speed.

This confirms our motivations that building symmetry-preserving pol-
icy networks leads to faster convergence. Additionally, when com-
pared to the data augmentation baselines in Figure 2.5, using equiv-
ariant networks is more beneficial. This is consistent with other results
in the equivariance literature [14, 187, 191, 193]. While data augmenta-
tion can be used to create a larger dataset by exploiting symmetries, it
does not directly lead to effective parameter sharing (as our approach
does). Note, in Pong we only train the first 15 million frames to high-

24

0 100 200 300 400 500 600
Time steps (x 25000)

20

15

10

5

0

5

10

15

20
Av

er
ag

e
Re

tu
rn

Stoch. Data Aug.
Full Data Aug.
Convolutional
Equivariant

Figure 2.5: Data augmentation
comparison on Pong.

light the difference in the beginning; in constrast, a typical training
duration is 50-200 million frames [124, 159].

For our ablation experiment, we wanted to control for the introduc-
tion of bases. It is not clear a priori that a network with a basis has
the same gradient descent dynamics as an equivalent ‘basisless’ net-
work. We compared equivariant, non-equivariant, and random bases,
as mentioned above. We found the equivariant basis led to the fastest
convergence. Figures 2.4a and 2.4c show that for CartPole and Pong
the nullspace basis converged faster than the random basis. In the grid
world there was no clear winner between the two. This is a curious
result, requiring deeper investigation in a follow-up.

For a third experiment, we investigated what happens if we sacrifice
strict equivariance of the policy. This is attractive because it removes
the need to find a transformation operator for a flattened output fea-
ture map. Instead, we only maintained an equivariant feature extrac-
tor, compared against a basic CNN feature extractor. The networks
built on top of these extractors were MLPs. The results, in Figure 2.4c,
are two-fold: 1) Basis feature extractors converge faster than standard
CNNs, and 2) the equivariant feature extractor has fastest convergence.
We hypothesize the equivariant feature extractor is fastest as it is easi-
est to learn an equivariant policy from equivariant features.
We have additionally compared an equivariant feature extractor to a
regular convolutional network on the Atari game Breakout, where the
difference between the equivariant network and the regular network
is much less pronounced. For details, see Appendix 2.C.

25

(a) Symmetries

0 25 50 75 100 125 150 175 200
Time steps (x 10000)

101

100

0

Av
er

ag
e

Re
tu

rn

Nullspace
Random
Equivariant

(b) Grid World: Bases

0 25 50 75 100 125 150 175 200
Time steps (x 10000)

101

100

0

A
v
e
ra

g
e
 R

e
tu

rn

Convolutional

Equivariant

(c) Grid World: CNNs

Figure 2.6: Grid World:
Trained with A2C, all networks
fine-tuned over 6 learning rates.
25%, 50% and 75% quantiles
over 20 random seeds shown.
a) showcase of symmetries, b)
Equivariant, nullspace, and ran-
dom bases c) plain CNN and
equivariant CNN.

2.5 Related Work

Past work on MDP homomorphisms has often aimed at discovering
the map itself based on knowledge of the transition and reward func-
tion, and under the assumption of enumerable state spaces [141, 142,
143, 165]. Other work relies on learning the map from sampled expe-
rience from the MDP [170, 16, 118]. Exactly computing symmetries in
MDPs is graph isomorphism complete [127] even with full knowledge
of the MDP dynamics. Rather than assuming knowledge of the tran-
sition and reward function, and small and enumerable state spaces, in
this work we take the inverse view: we assume that we have an eas-
ily identifiable transformation of the joint state–action space and ex-
ploit this knowledge to learn more efficiently. Exploiting symmetries
in deep RL has been previously explored in the game of Go, in the
form of symmetric filter weights [151, 30] or data augmentation [156].
Other work on data augmentation increases sample efficiency and gen-
eralization on well-known benchmarks by augmenting existing data
points state transformations such as random translations, cutout, color
jitter and random convolutions [99, 31, 107, 111]. In contrast, we en-
code symmetries into the neural network weights, leading to more
parameter sharing. Additionally, such data augmentation approaches
tend to take the invariance view, augmenting existing data with state
transformations that leave the state’s Q-values intact [99, 31, 107, 111]
(the exception being [115] and [119], who augment trajectories rather
than just states). Similarly, permutation invariant networks are com-
monly used in approaches to multi-agent RL [160, 117, 81]. We instead
take the equivariance view, which accommodates a much larger class of
symmetries that includes transformations on the action space. Abdol-
hosseini et al. [1] have previously manually constructed an equivari-
ant network for a single group of symmetries in a single RL problem,
namely reflections in a bipedal locomotion task. Our MDP homomor-
phic networks allow for automated construction of networks that are
equivariant under arbitrary discrete groups and are therefore applica-
ble to a wide variety of problems.

26

From an equivariance point-of-view, the automatic construction of equiv-
ariant layers is new. [35] comes close to specifying a procedure, outlin-
ing the system of equations to solve, but does not specify an algorithm.
The basic theory of group equivariant networks was outlined in [34,
35] and [33], with notable implementations to 2D roto-translations on
grids [193, 188, 186] and 3D roto-translations on grids [192, 191, 187].
All of these works have relied on hand-constructed equivariant layers.

2.6 Conclusion

This chapter introduced MDP homomorphic networks, a family of
deep architectures for reinforcement learning problems where symme-
tries have been identified. MDP homomorphic networks tie weights
over symmetric state-action pairs. This weight-tying leads to fewer
degrees-of-freedom and in our experiments we found that this trans-
lates into faster convergence. We used the established theory of MDP
homomorphisms to motivate the use of equivariant networks in sym-
metric MDPs, thus formalizing the connection between equivariant
networks and symmetries in reinforcement learning. As an innova-
tion, we also introduced the first method to automatically construct
equivariant network layers, given a specification of the symmetries in
question, thus removing a significant implementational obstacle. For
future work, we want to further understand the symmetrizer and its
effect on learning dynamics, as well as generalizing to problems that
are not fully symmetric.

2.7 Broader Impact Statement

The goal of this chapter is to make (deep) reinforcement learning tech-
niques more efficient at solving Markov decision processes (MDPs)
by making use of prior knowledge about symmetries. We do not ex-
pect the particular algorithm we develop to lead to immediate societal
risks. However, Markov decision processes are very general, and can
e.g. be used to model problems in autonomous driving, smart grids,
and scheduling. Thus, solving such problems more efficiently can in
the long run cause positive or negative societal impact.

For example, making transportation or power grids more efficient,
thereby making better use of scarce resources, would be a significantly
positive impact. Other potential applications, such as in autonomous

27

weapons, pose a societal risk [131]. Like many AI technologies, when
used in automation, our technology can have a positive impact (in-
creased productivity) and a negative impact (decreased demand) on
labor markets.

More immediately, control strategies learned using RL techniques are
hard to verify and validate. Without proper precaution (e.g. [177]),
employing such control strategies on physical systems thus run the
risk of causing accidents involving people, e.g. due to reward mis-
specification, unsafe exploration, or distributional shift [5].

29

Chapter Appendix

2.A The Symmetrizer

In this section we prove three properties of the symmetrizer: the sym-
metric property (S(W) ∈ W for all W ∈ Wtotal), the fixing prop-
erty (W ∈ W =⇒ S(W) = W) , and the idempotence property
(S(S(W)) = S(W) for all W ∈ Wtotal).

The Symmetric Property Here we show that the symmetrizer S maps
matrices W ∈ Wtotal to equivariant matrices S(W) ∈ W . For this,
we show that a symmetrized weight matrix S(W) from Equation 16

satisfies the equivariance constraint of Equation 14.

Proof 1 (The symmetric property) We begin by recalling the equivari-
ance constraint

KgWz = WLgz, for all g ∈ G, z ∈ RDin+1. (2.18)

Now note that we can drop the dependence on z, since this equation is true for
all z. At the same time, we left-multiply both sides of this equation by Kg

−1,
which is possible because group representations are invertible. This results in
the following set of equations

W = K−1
g WLg, for all g ∈ G. (2.19)

Any W satisfying this equation satisfies Equation 2.18 and is thus a member
ofW . To show that S(W) is a member ofW , we thus would need show that
S(W) = K−1

g S(W)Lg for all W ∈ Wtotal and g ∈ G. This can be shown as

30

follows:

K−1
g S(W)Lg = K−1

g

(
1
|G| ∑

h∈G
K−1

h WLh

)
Lg substitute S(W) = K−1

g S(W)Lg

(2.20)

=
1
|G| ∑

h∈G
K−1

g K−1
h WLhLg (2.21)

=
1
|G| ∑

h∈G
K−1

hg WLhg representation definition: LhLg = Lhg

(2.22)

=
1
|G| ∑

g′g−1∈G

K−1
g′ WLg′ change of variables g′ = hg, h = g′g−1

(2.23)

=
1
|G| ∑

g′∈Gg
K−1

g′ WLg′ g′g−1 ∈ G ⇐⇒ g′ ∈ Gg

(2.24)

=
1
|G| ∑

g′∈G
K−1

g′ WLg′ G = Gg (2.25)

= S(W) definition of symmetrizer.
(2.26)

Thus we see that S(W) satisfies the equivariance constraint, which implies
that S(W) ∈ W .

The Fixing Property For the symmetrizer to be useful, we need to
make sure that its range covers the equivariant subspace W , and not
just a subset of it; that is, we need to show that

W = {S(W) ∈ W|W ∈ Wtotal}. (2.27)

We show this by picking a matrix W ∈ W and showing that W ∈
W =⇒ S(W) = W.

Proof 2 (The fixing property) We begin by assuming that W ∈ W , then

S(W) =
1
|G| ∑

g∈G
K−1

g WLg definition (2.28)

=
1
|G| ∑

g∈G
K−1

g KgW W ∈ W ⇐⇒ KgW = WLg, ∀g ∈ G

(2.29)

=
1
|G| ∑

g∈G
W (2.30)

= W (2.31)

31

This means that the symmetrizer leaves the equivariant subspace invariant.
In fact, the statement we just showed is stronger in saying that each point in
the equivariant subspace is unaltered by the symmetrizer. In the language of
group theory we say that subspaceW is fixed under G. Since S :Wtotal →
W and there exist matrices W such that for every W ∈ W , S(W) = W, we
have shown that

W = {S(W) ∈ W|W ∈ Wtotal}. (2.32)

The Idempotence Property Here we show that the symmetrizer S(W)

from Equation 16 is idempotent, S(S(W)) = S(W).

Proof 3 (The idempotence property) Recall the definition of the symmetrizer

S(W) =
1
|G| ∑

g∈G
K−1

g WLg. (2.33)

Now let’s expand S(S(W)):

S(S(W)) = S

(
1
|G| ∑

h∈G
K−1

h WLh

)
(2.34)

=
1
|G| ∑

g∈G
K−1

g

(
1
|G| ∑

h∈G
K−1

h WLh

)
Lg (2.35)

=
1
|G| ∑

g∈G

(
1
|G| ∑

h∈G
K−1

g K−1
h WLhLg

)
linearity of sum

(2.36)

=
1
|G| ∑

g∈G

(
1
|G| ∑

h∈G
K−1

hg WLhg

)
definition of group representations

(2.37)

=
1
|G| ∑

g∈G

 1
|G| ∑

g′g−1∈G

K−1
g′ WLg′

 change of variables g′ = hg

(2.38)

=
1
|G| ∑

g∈G

 1
|G| ∑

g′∈Gg
K−1

g′ WLg′

 g′g−1 ∈ G ⇐⇒ g′ ∈ Gg

(2.39)

=
1
|G| ∑

g∈G

 1
|G| ∑

g′∈G
K−1

g′ WLg′

 Gg = G (2.40)

=
1
|G| ∑

g′∈G
K−1

g′ WLg′ sum over constant

(2.41)

= S(W) (2.42)

32

Thus we see that S(W) satisfies the equivariance constraint, which implies
that S(W) ∈ W .

2.B Experimental Settings

Designing representations

In the main text we presented a method to construct a space of in-
tertwiners W using the symmetrizer. This relies on us already hav-
ing chosen specific representations/transformation operators for the
input, the output, and for every intermediate layer of the MDP homo-
morphic networks. While for the input space (state space) and output
space (policy space), these transformation operators are easy to define,
it is an open question how to design a transformation operator for the inter-
mediate layers of our networks. Here we give some rules of thumb that
we used, followed by the specific transformation operators we used in
our experiments.

For each experiment we first identified the group G of transforma-
tions. In every case, this was a finite group of size |G|, where the size
is the number of elements in the group (number of distinct transfor-
mation operators). For example, a simple flip group as in Pong has
two elements, so |G| = 2. Note that the group size |G| does not nec-
essarily equal the size of the transformation operators, whose size is
determined by the dimensionality of the input/activation layer/policy.

Stacking Equivariant Layers If we stack equivariant layers, the result-
ing network is equivariant as a whole too [34]. To see that this is
the case, consider the following example. Assume we have network f ,
consisting of layers f1 and f2, which satisfy the layer-wise equivariance
constraints:

Pg[f1(x)] = f1(Lg[x]) (2.43)

Kg[f2(x)] = f2(Pg[x]) (2.44)

With Kg the output transformation of the network, Lg the input trans-
formation, and Pg the intermediate transformation. Now,

Kg[f (x)] = Kg[f2(f1(x))] (2.45)

= f2(Pg[f1(x)] (f2 equivariance constraint) (2.46)

= f2(f1(Lg[x])) (f1 equivariance constraint) (2.47)

= f (Lg[x]) (2.48)

33

and so the whole network f is equivariant with regards to the input
transformation Lg and the output transformation Kg. Note that this
depends on the intermediate representation Pg being shared between
layers, i.e. f1’s output transformation is the same as f2’s input trans-
formation.

MLP-structured networks For MLP-structured networks (CartPole), typ-
ically the activations have shape [batch_size, nc], with nc the num-
ber of channels. Instead we used a shape of [batch_size, nc,

representation_size], where for the intermediate layers
representation_size=|G|+1 (we have a +1 because of the bias). The
transformation operators we then apply to the activations is the set of
permutations for group size |G| appended with a 1 on the diagonal for
the bias, acting on this last ‘representation dimension’. Thus a forward
pass of a layer is computed as

yb,cout,rout
=

nc

∑
cin=1

|G|+1

∑
rin=1

zb,cin,rinWcout,rout,cin,rin (2.49)

where

Wcout,rout,cin,rin =
rank(W)

∑
i=1

ci,cout,cinVi,rout,rin . (2.50)

CNN-structured networks For CNN-structured networks (Pong and Grid
World), typically the activations have shape [batch_size,

nc, height, width]. Instead we used a shape of
[batch_size, nc, representation_size, height, width], where for
the intermediate layers representation_size=|G|+1. The transforma-
tion operators we apply to the input of the layer is a spatial transfor-
mation on the height, width dimensions and a permutation on the
representation dimension. This is because in the intermediate layers
of the network the activations do not only transform in space, but also
along the representation dimensions of the tensor. The transformation
operators we apply to the output of the layer is just a permutation
on the representation dimension. Thus a forward pass of a layer is
computed as

yb,cout,rout,hout,wout
=

nc

∑
cin=1

|G|+1

∑
rin=1

∑
hin,win

zb,cin,rin,hout+hin,wout+win Wcout,rout,cin,rin,hin,win

(2.51)

where

Wcout,rout,cin,rin,hin,win =
rank(W)

∑
i=1

ci,cout,cinVi,rout,rin,hin,win . (2.52)

34

Equivariant Nullspace Random MLP

0.01 0.005 0.001 0.001

Table 2.B.1: Final learning
rates used in CartPole-v1 exper-
iments.

Cartpole-v1

Group Representations For states:

Lge =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Lg1 =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


For intermediate layers and policies:

Kπ
ge =

(
1 0
0 1

)
, Kπ

g1
=

(
0 1
1 0

)

For values we require an invariant rather than equivariant output. This
invariance is implemented by defining the output representations to be
|G| identity matrices of the desired output dimensionality. For predict-
ing state values we required a 1-dimensional output, and we thus used
|G| 1-dimensional identity matrices, i.e. for value output V:

KV
ge =

(
1
)

, KV
g1

=
(

1
)

Hyperparameters For both the basis networks and the MLP, we used
Xavier initialization. We trained PPO using ADAM on 16 parallel envi-
ronments and fine-tuned over the learning rates {0.01, 0.05, 0.001, 0.005,
0.0001, 0.0003, 0.0005} by running 25 random seeds for each setting,
and report the best curve. The final learning rates used are shown
in Table 2.B.1. Other hyperparameters were defaults in RLPYT [159],
except that we turn off learning rate decay.

Architecture
Basis networks:

Listing 2.1: Basis Networks Architecture for CartPole-v1

1 BasisLinear(repr_in=4, channels_in=1, repr_out=2, channels_out=64)

2 ReLU()

3 BasisLinear(repr_in=2, channels_in=64, repr_out=2, channels_out=64)

4 ReLU()

5 BasisLinear(repr_in=2, channels_in=64, repr_out=2, channels_out=1)

6 BasisLinear(repr_in=2, channels_in=64, repr_out=1, channels_out=1)

First MLP variant:

35

Listing 2.2: First MLP Architecture for CartPole-v1

1 Linear(channels_in=1, channels_out=64)

2 ReLU()

3 Linear(channels_in=64, channels_out=128)

4 ReLU()

5 Linear(channels_in=128, channels_out=1)

6 Linear(channels_in=128, channels_out=1)

Second MLP variant:

Listing 2.3: Second MLP Architecture for CartPole-v1

1 Linear(channels_in=1, channels_out=128)

2 ReLU()

3 Linear(channels_in=128, channels_out=128)

4 ReLU()

5 Linear(channels_in=128, channels_out=1)

6 Linear(channels_in=128, channels_out=1)

GridWorld

Group Representations For states we use numpy.rot90. The stack of
weights is rolled.

For the intermediate representations:

Lge =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Lg1 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 ,

Lg2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , Lg3 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


For the policies:

Kπ
ge =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , Kπ
g1

=


1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 ,

Kπ
g2

=


1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

 , Kπ
g3

=


1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0



36

For the values:

KV
ge =

(
1
)

, KV
g1

=
(

1
)

, KV
g2

=
(

1
)

, KV
g3

=
(

1
)

Hyperparameters For both the basis networks and the CNN, we used
He initialization. We trained A2C using ADAM on 16 parallel environ-
ments and fine-tuned over the learning rates {0.00001, 0.00003, 0.0001,
0.0003, 0.001, 0.003} on 20 random seeds for each setting, and reporting
the best curve. The final learning rates used are shown in Table 2.B.2.
Other hyperparameters were defaults in RLPYT [159].

Equivariant Nullspace Random CNN

0.001 0.003 0.001 0.003

Table 2.B.2: Final learning rates
used in grid world experiments.

Architecture
Basis networks:

Listing 2.4: Basis Networks Architecture for GridWorld

1 BasisConv2d(repr_in=1, channels_in=1, repr_out=4, channels_out=b 16√
4
c,

2 filter_size=(7, 7), stride=2, padding=0)

3 ReLU()

4 BasisConv2d(repr_in=4, channels_in=b 16√
4
c, repr_out=4, channels_out=b 32√

4
c,

5 filter_size=(5, 5), stride=1, padding=0)

6 ReLU()

7 GlobalMaxPool()

8 BasisLinear(repr_in=4, channels_in=b 32√
4
c, repr_out=4, channels_out=b 512√

4
c)

9 ReLU()

10 BasisLinear(repr_in=4, channels_in=b 512√
4
c, repr_out=5, channels_out=1)

11 BasisLinear(repr_in=4, channels_in=b 512√
4
c, repr_out=1, channels_out=1)

CNN:

Listing 2.5: CNN Architecture for GridWorld

1 Conv2d(channels_in=1, channels_out=16,
2 filter_size=(7, 7), stride=2, padding=0)

3 ReLU()

4 Conv2d(channels_in=16,channels_out=32,
5 filter_size=(5, 5), stride=1, padding=0)

6 ReLU()

7 GlobalMaxPool()

8 Linear(channels_in=32, channels_out=512)
9 ReLU()

10 Linear(channels_in=512, channels_out=5)

11 Linear(channels_in=512, channels_out=1)

37

Pong

Group Representations For the states we use numpy’s indexing to flip
the input, i.e.
w = w[..., ::-1, :], then the permutation on the representation

dimension of the weights is a numpy.roll, since the group is cyclic.

For the intermediate layers:

Lge =

(
1 0
0 1

)
, Lg1 =

(
0 1
1 0

)

Hyperparameters For both the basis networks and the CNN, we used
He initialization. We trained A2C using ADAM on 4 parallel environ-
ments and fine-tuned over the learning rates {0.0001, 0.0002, 0.0003}
on 15 random seeds for each setting, and reporting the best curve. The
learning rates to fine-tune over were selected to be close to where the
baseline performed well in preliminary experiments. The final learn-
ing rates used are shown in Table 2.B.3. Other hyperparameters were
defaults in RLPYT [159].

Equivariant Nullspace Random CNN

0.0002 0.0002 0.0002 0.0001

Table 2.B.3: Learning rates used
in Pong experiments.

Architecture
Basis Networks:

Listing 2.6: Basis Networks Architecture for Pong

1 BasisConv2d(repr_in=1, channels_in=4, repr_out=2, channels_out=b 16√
2
c,

2 filter_size=(8, 8), stride=4, padding=0)

3 ReLU()

4 BasisConv2d(repr_in=2, channels_in=b 16√
2
c, repr_out=2, channels_out=b 32√

2
c,

5 filter_size=(5, 5), stride=2, padding=0)

6 ReLU()

7 Linear(channels_in=2816, channels_out=b 512√
2
c)

8 ReLU()

9 Linear(channels_in=b 512√
2
c, channels_out=6)

10 Linear(channels_in=b 512√
2
c, channels_out=1)

CNN:

Listing 2.7: CNN Architecture for Pong

1 Conv2d(channels_in=4, channels_out=16, filter_size=(8, 8), stride=4, padding=0)

2 ReLU()

38

3 Conv2d(channels_in=16,channels_out=32, filter_size=(5, 5), stride=2, padding=0)

4 ReLU()

5 Linear(channels_in=2048, channels_out=512)
6 ReLU()

7 Linear(channels_in=512, channels_out=6)

8 Linear(channels_in=512, channels_out=1)

39

2.C Breakout Experiments

We evaluated the effect of an equivariant basis extractor on Breakout,
compared to a baseline convolutional network. The hyperparameter
settings and architecture were largely the same as those of Pong, ex-
cept for the input group representation, a longer training time, and
that we considered a larger range of learning rates. To ensure sym-
metric states, we remove the two small decorative blocks in the bottom
corners.

Group Representations For the states we use numpy’s indexing to flip
the input, i.e.
w = w[..., :, ::-1] (note the different axis than in Pong), then the
permutation on the representation dimension of the weights is a
numpy.roll, since the group is cyclic.

For the intermediate layers:

Lge =

(
1 0
0 1

)
, Lg1 =

(
0 1
1 0

)

Hyperparameters We used He initialization. We trained A2C using
ADAM on 4 parallel environments and fine-tuned over the learning
rates {0.001, 0.005, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.00001, 0.00005}
on 15 random seeds for each setting, and reporting the best curve. The
final learning rates used are shown in Table 2.C.1. Other hyperparam-
eters were defaults in RLPYT [159].

Equivariant CNN

0.0002 0.0002

Table 2.C.1: Learning rates used
in Breakout experiments.

0 250 500 750 1000 1250 1500 1750 2000
Time steps (x 25000)

0

20

40

60

80

100

Av
er

ag
e

Re
tu

rn

Equivariant
Convolutional

Figure 2.C.1: Breakout:
Trained with A2C, all networks
fine-tuned over 9 learning rates.
25%, 50% and 75% quantiles
over 14 random seeds shown.

40

Results Figure 2.C.1 shows the result of the equivariant feature ex-
tractor versus the convolutional baseline. While we again see an im-
provement over the standard convolutional approach, the difference is
much less pronounced than in CartPole, Pong or the grid world. It
is not straightforward why. One factor could be that the equivariant
feature extractor is not end-to-end MDP homomorphic. It instead out-
puts a type of MDP homomorphic state representations and learns a
regular policy on top. As a result, the unconstrained final layers may
negate some of the advantages of the equivariant feature extractor.
This may be more of an issue for Breakout than Pong, since Breakout
is a more complex game.

2.D Cartpole-v1 Deeper Network Results

We show the effect of training a deeper network – 4 layers instead of
2 – for CartPole-v1 in Figure 2.D.1. The performance of the regular
depth networks in Figure 4b and the deeper networks in Figure 2.D.1
is comparable, except that for the regular MLP, the variance is much
higher when using deeper networks.

0 20 40 60 80 100 120 140
Time steps (x 500)

0

100

200

300

400

500

Av
er

ag
e

Re
tu

rn

Nullspace
Random
Equivariant

(a) Cartpole-v1: Bases

0 20 40 60 80 100 120 140
Time steps (x 500)

0

100

200

300

400

500

A
v
e
ra

g
e
 R

e
tu

rn

MLP, 4 64 64 128 128 2

MLP, 4 128 128 128 128 2

Equivariant, 4 64 64 64 64 2

(b) Cartpole-v1: MLPs

Figure 2.D.1: Cartpole:
Trained with PPO, all networks
fine-tuned over 7 learning rates.
25%, 50% and 75% quantiles
over 25 random seeds shown.
a) Equivariant, random, and
nullspace bases. b) Equivariant
basis, and two MLPs with
different degrees of freedom.

2.E Bellman Equations

Vπ(s) = ∑
a∈A

π(s, a)

[
R(s, a) + γ ∑

s′∈S
T(s, a, s′)Vπ(s′)

]
(2.53)

Qπ(s, a) = R(s, a) + γ ∑
s′∈S

T(s, a, s′)Vπ(s′). (2.54)

41

3
Multi-Agent MDP
Homomorphic Networks

3.1 Introduction

In the previous Chapter, we have shown that enforcing group symme-
tries in single agent reinforcement learning improves data efficiency.
In this Chapter, we will go beyond the single agent case and consider
global symmetries in distributed cooperative multi-agent learning.

Equivariant and geometric deep learning have gained traction in re-
cent years, showing promising results in supervised learning [34, 191,
187, 186, 193, 52, 166], unsupervised learning [39] and reinforcement
learning [173, 157]. In single agent reinforcement learning, incorpo-
rating symmetry information has been a successful approach, for ex-
ample using MDP homomorphic networks [173], trajectory augmen-
tation [115, 119], or symmetric locomotion policies [1]. Equivariance
enables an agent to learn policies more efficiently within its environ-
ment by sharing weights between state-action pairs that are equivalent
under a transformation. As a result of this weight sharing, the agent
implicitly learns a policy in a reduced version of the MDP. We are inter-
ested in cooperative multi-agent reinforcement learning, where sym-
metries exist both in the global environment, and between individual
agents in the larger multi-agent system. Existing work on symmetries
in single agent reinforcement learning can only be generalized to the
fully centralized multi-agent setting, because such approaches rely on

42

the global symmetry in the full state-action spaces and these can result
in correspondences across agents, as shown in Figure 3.1.1.

Figure 3.1.1: Example of a global
symmetry in a traffic light con-
trol problem, where each agent,
locally controlling the traffic
lights of a single intersection,
has to decide to give a green
light to either the horizontal
or vertical lanes. When a ro-
tated state occurs in the envi-
ronment the optimal policy is
permuted, both between and
within agents. Local policies
are color coded. Multi-Agent
MDP Homomorphic Networks
are equivariant to global sym-
metries while still allowing dis-
tributed execution based on lo-
cal observations and local com-
munications only.This means such approaches cannot be used in distributed multi-agent

systems with communication constraints. Here, we seek to be equiv-
ariant to global symmetries of cooperative multi-agent systems while
still being able to execute policies in a distributed manner.

Existing work in deep multi-agent reinforcement learning has shown
the potential of using permutation symmetries and invariance between
agents [117, 81, 163, 144, 18, 160, 171]. Such work takes an anonymity
view of homogeneous agents, where the agent’s observations matter
for the policy but not its identity. Using permutation symmetries en-
sures extensive weight sharing between agents, resulting in improved
data efficiency. Here, we go beyond such permutation symmetries,
and consider more general symmetries of global multi-agent systems,
such as rotational symmetries.

In this chapter, we propose Multi-Agent MDP Homomorphic Net-
works, a class of distributed policy networks which are equivariant
to global symmetries of the multi-agent system, as well as to standard
permutation symmetries. Our contributions are as follows. (i) We
propose a factorization of global symmetries in the joint state-action
space of cooperative multi-agent systems. (ii) We introduce a multi-
agent equivariant policy network based on this factorization. (iii) Our
main contribution is an approach to cooperative multi-agent reinforce-

43

ment learning that is globally equivariant while requiring only local
agent computation and local communication between agents at execu-
tion time. We evaluate Multi-Agent MDP Homomorphic Networks on
symmetric multi-agent problems and show improved data efficiency
compared to non-equivariant baselines.

3.2 Related Work

Symmetries in single agent reinforcement learning Symmetries in Markov
Decision Processes have been formalized by [204, 141]. Recent work
on symmetries in single agent deep reinforcement learning has shown
improvements in terms of data efficiency. Such work revolves around
symmetries in policy networks [173, 157], symmetric filters [30], in-
variant data augmentation [107, 99] or equivariant trajectory augmen-
tation [115, 119, 122] These approaches are only suitable for single
agent problems or centralized multi-agent controllers. Here, we solve
the problem of enforcing global equivariance while still allowing dis-
tributed execution.

Graphs and permutation symmetries in multi agent reinforcement learning
Graph-based methods in cooperative multiagent reinforcement learn-
ing are well-explored. Much work is based around coordination graphs
[64, 62, 97], including approaches that approximate local Q-functions
with neural networks and use max-plus to find a joint policy [171, 18],
and approaches that use graph-structured networks to find joint poli-
cies or value functions [81, 160]. In deep learning for multi-agent sys-
tems, the use of permutation symmetries is common, either through
explicit formulations [163, 18] or through the use of graph or mes-
sage passing networks [117, 81, 160]. Policies in multi-agent systems
with permutation symmetries between agents are also known as func-
tionally homogeneous policies [204] or policies with agent anonymity
[144, 175]. Here, we move beyond permutation symmetries to a broader
group of symmetries in multiagent reinforcement learning.

Symmetries in multi agent reinforcement learning Recently, [74] used
knowledge of symmetries to improve zero-shot coordination in games
which require symmetry-breaking. Here, we instead use symmetries
in cooperative multi-agent systems to improve data efficiency by pa-
rameter sharing between different transformations of the global sys-
tem.

44

3.3 Background

In this section we introduce the necessary definitions and notation
used in the rest of the chapter.

Multi-Agent MDPs

We will start from the definition of Multi-Agent MDPs, a class of fully
observable cooperative multi-agent systems. Full observability implies
that each agent can execute the same centralized policy. Later on we
will define a distributed variant of this type of decision making prob-
lem.

Definition 1 A Multi-Agent Markov Decision Process (MMDP) [21] is
a tuple (N , S, A, T, R) whereN is a set of m agents, S is the state space, A =

A1 × · · · × Am is the joint action space of the MMDP, T : S× A1 × · · · ×
Am× S→ [0, 1] is the transition function, and R : S× A1× · · · × Am → R

is the immediate reward function.

The goal of an MMDP, as in the single agent case, is to find a joint
policy that maps states to probability distributions over joint actions,
π : S→ ∆(A), (with ∆(A) the space of such distributions) to maximize
the expected discounted return of the system, Rt = E[∑T

k=0 γkrt+k+1]

with γ ∈ [0, 1] a discount factor. An MMDP can be viewed as a single-
agent MDP where the agent takes joint actions.

Groups and Transformations

In this chapter we will refer extensively to group symmetries. Here,
we will briefly introduce these concepts and explain their significance
to discussing equivalences of decision making problems.

A group G is a set with a binary operator · that obeys the group ax-
ioms: identity, inverse, closure, and associativity. Consider as a run-
ning example the set of 90 degree rotations {0◦, 90◦, 180◦, 270◦}, which
we can write as rotation matrices:

R(θ) =

[
cos θ − sin θ

sin θ cos θ

]
(3.1)

with θ ∈ {0, π
2 , π, 3π

2 }. Composing any two matrices in this set results
in another matrix in the set, meaning the set is closed under com-
position. For example, composing R(π

2) and R(π) results in another
member of the set, in this case R(3π

2). Similarly, each member of the
set has an inverse that is also in the set, and R(0) is an identity ele-

45

ment. Since matrix multiplication is associative, the group axioms are
satisfied and the set is a group under composition.

A group action is a function G× X → X that satisfies ex = x (where e
is the identity element) and (g · h)x = g · (hx). For example, the group
of 90 degree rotation matrices acts on vectors to rotate them. Similar to
the action of this group on vectors, we can define an action of the same
group on image space: e.g., the NumPy [68] function np.rot90 acts on
the set of images. We will consider group actions on the set of states
represented as image observations. We match these with group actions
on policies. Since we consider discrete action spaces, a group element
g acting on a policy π will be represented as a matrix multiplication
of the policy with a permutation matrix.

Figure 3.3.1: The orbit of a traffic
light state under the group of 90 de-
gree rotations.

When discussing symmetries in decision making problems, we iden-
tify sets of state-action pairs that are equivalent: if the state is trans-
formed, the policy should be transformed as well, but potentially
with a different representation of the transformation. See Figure 3.1.1.
We are interested in the case where the reward and transition func-
tions are invariant in the orbit of state-action pairs under a symmetry
group. The orbit of a point v ∈ V, with V a vector space, is the set
of all its transformations (e.g. all rotations of the point), defined as
O(v) = {gv|∀g ∈ G}. The orbit of a point under a group forms an
equivalence class. See Figure 3.3.1 for an example of an orbit of a
traffic light state.

3.4 Distributing Symmetries over Multiple Agents

Consider the cooperative traffic light control system in Figure 3.1.1
that contains transformation-equivalent global state-action pairs. We
first formalize global symmetries of the system similarly to symmetries
in a single agent MDP. Then we will discuss how we can formulate
distributed symmetries in a distributed MMDP. Finally, we introduce
Multi-Agent MDP Homomorphic Networks.

46

Symmetries in MMDPs

We define symmetries in an MMDP similar to an MDP with symme-
tries [173].

Definition 2 An MMDP is an MMDP with symmetries if reward and tran-
sition functions are invariant under a transformation group G. That is, the
MMDP has symmetries if there is at least one non-trivial group G of trans-
formations Lg : S→ S and for every s, Ks

g : A→ A such that

R(s, a) = R(Lg[s], Ks
g[a]) ∀g ∈ G, s ∈ S, a ∈ A, (3.2)

T(s, a, s′) = T(Lg[s], Ks
g[a], Lg[s′]) ∀g ∈ G, s, s′ ∈ S, a ∈ A. (3.3)

If two state-action pairs s, a and Lg[s], Ks
g[a] obey Eq. 3.2 and 3.3, then

they are equivalent [173]. Consider as an example the symmetries in
Figure 3.1.1. These symmetries can result in correspondences across
agents, for example when the observation of agent i is mapped by
the symmetry to another agent j that is arbitrarily far away and with
which there is no communication channel. In the next section, we will
resolve this problem by defining distributed symmetries in terms of
local observations and the communication graph defined by the state.

If we have an MMDP with symmetries, that means that there are sym-
metric optimal policies, i.e. if the state of the MMDP transforms, the
policy transforms accordingly. The above definition of an MMDP with
symmetries is only applicable to the centralized setting. If we want
to be able to execute policies in a distributed manner, we will need to
enforce equivariance in a distributed manner.

Distributed Multi-Agent Symmetries

In a distributed MMDP, agents make decisions based on local infor-
mation only, i.e. the local states they observe, and the communications
they receive from neighbors, defined as follows:

Definition 3 A Distributed Multiagent Markov Decision Process (Dis-
tributed MMDP) (N , S, A, T, R) is an MMDP where agents can communi-
cate as specified by a graph G = (V , E) with one node vi ∈ V per agent
and an edge (i, j) ∈ E if agents i and j can communicate. Thus, S =

({Si}i∈N , {Eij}(i,j)∈E), with Si the set of state features observable by agent
i, which may include shared global features, and Eij the set of edge features
between i and j. In a distributed MMDP, each agent’s action can only depend
on the local state and the communications it receives1.

1 Communication is constrained, i.e.
agents cannot simply share their full ob-
servations with each other.

47

Here, we focus on Distributed MMDPs which have a spatial compo-
nent, i.e. each agent has a coordinate in some space, and the attributes
of the edges between the agents in the communication graph contain
spatial information as well. For instance, the attributes eij ∈ E for edge
(i, j) might be the difference vector between agent i and agent j’s co-
ordinates. Since both agent observations and interaction edges have
spatial features, a global symmetry will affect both the agent observa-
tions, the agent locations, and the features on the interaction edges.
See Figure 3.4.1.

permute observations transform edges rotate observations

original state symmetric state

Figure 3.4.1: Example of how
a global transformation of a dis-
tributed traffic light control state
can be viewed as 1) a permutation
of the observations over the agents,
2) a permutation of the interaction
edges, 3) a transformation of the lo-
cal observations.

To allow a globally equivariant policy network with distributed exe-
cution, we might naively decide to restrict each agent’s local policy
network to be equivariant to local transformations. However, this does
not give us the correct global transformation, as joining the local trans-
formations does not give us the same as the global transformations, as
illustrated in Figure 3.4.2.

Instead, to get the correct transformation as shown in the left side
of Figure 3.4.2, the local state is transformed, but also its position is
changed, which can be seen as a permutation of the agents and their
neighbors. To give an example of the equivariance constraint that we
want to impose: the lower left agent (before transformation) should
select an action based on its local state and communication received
from its northern and eastern neighbor, while the top left agent (after
transformation) should select the transformed version of the action
based on its rotated local state and communication from its eastern
and southern neighbor.

Since the agent has no other information about the system, if the lo-
cal observations are transformed (e.g. rotated), and the messages it
receives are transformed similarly, then from a local perspective the
agent is in an equivalent state and should execute the same policy, but
with an equivalently transformed action.

From the perspective of our agent and all its neighbors, the equiva-
lence holds for this local subgraph as well: if the observations and

48

Figure 3.4.2: Example of the dif-
ference between a global transfor-
mation on the global state, and a
set of local transformations on lo-
cal states. On the left we rotate
the entire world by 90 degrees clock-
wise, which involves rotating cross-
ings and streets. On the right we
perform local uncoordinated trans-
formations only at the street level.
The latter is not a symmetry of the
problem.local interactions rotate relative to each other, then the whole subgraph

rotates. See Figure 3.4.1. Thus, as long as the transformations are
applied to the full set of observations and the full set of communica-
tions, we have a global symmetry. We therefore propose the following
definition of a Distributed MMDP with Symmetries.

Definition 4 Let s = ({si}i∈N , {eij}(i,j)∈E). Then a Distributed MMDP
with symmetries is a Distributed MMDP for which the following equations
hold for at least one non-trivial set of group transformations Lg : S→ S and
for every s, Ks

g : A→ A such that

R(s, a) = R(Lg[s], Ks
g[a]) ∀g ∈ G, s ∈ S, a ∈ A (3.4)

T(s, a, s′) = T(Lg[s], Ks
g[a], Lg[s′]) ∀g ∈ G, s, s′ ∈ S, a ∈ A (3.5)

where equivalently to acting on s with Lg, we can act on the interaction and
agent features separately with L̃g and Ug, to end up in the same global state:

Lg[s] = (Ps
g[{L̃g[si]}i∈N], Pe

g[{Ug[eij]}(i,j)∈E]) (3.6)

for L̃g : Si → Si, Ug : E → E, and Ps
g and Pe

g the state and edge permuta-
tions.

Here, E is the set of edge features. The symmetries acting on the agents
and agent interactions in the Distributed MMDP are a class of symme-
tries we call distributable symmetries. We have now defined a class of
Distributed MMDPs with symmetries for which we can distribute a
global symmetry into a set of symmetries on agents and agent inter-
actions. This distribution allows us to define distributed policies that
respect the global symmetry.

Multi-Agent MDP Homomorphic Networks

We have shown above how distributable global symmetries can be de-
composed into local symmetries on agent observations and agent inter-

49

actions. Here, we discuss how to implement distributable symmetries
in multi-agent systems in practice.

General Formulation

We want to build a neural network that 1) allows distributed execution,
so that we can compute policies without a centralized controller 2) al-
lows us to pass communications between agents (agent interactions),
to enable coordination and 3) exhibits the following global equivari-
ance constraint:

~πθ(Lg[s]) = Hs
g[~πθ(s)] (3.7)

with Hs
g : Π → Π. Thus, the policy network ~π that outputs the joint

policy must be equivariant under group transformations of the global
state. To satisfy 1) and 2), i.e. allowing distributed execution and
agent-to-agent communication, as well as permutation equivariance,
we formulate the network as a message passing network (MPN), but
with global equivariance constraints.

Hs
g [~π] = MPNθ(Lg[s]) (3.8)

Since a network is end-to-end equivariant if all its layers are equivari-
ant with matching representations [34], we require layer-wise equiv-
ariance constraints on the layers. A single layer in an MPN is given by
a set of node updates, i.e. f (l+1)

i = φu

(
f (l)i , ∑

|Ni |
j=1 φm

(
eij, f (l)j

))
, with

f (l)j the current encoding of agent j in layer l, φm the message function
that computes mj→i based on the edge eij and the current encoding
of agent j, and φu the node update function that updates agent i’s
current encoding based on f (l)i and the aggregated received message

m(l)
i . Since the layer is given by a set of node updates, the equivari-

ance constraint is on the node updates. In other words, φu must be
an equivariant function of local encoding f (l)i and aggregated message

m(l)
i :

Pg

[
φu(f (l)i , m(l)

i)
]
= φu

(
Lg[f (l)i], Lg[m

(l)
i]
)

(3.9)

Thus, the node update function φu is constrained to be equivariant to
transformations of inputs f (l)i and m(l)

i . Therefore, to conclude that
the outputs of φu transform according to Pg, we only need to enforce
that its inputs fi and mi transform according to Lg. Thus, the sub-

function φm that computes the messages m(l)
i must be constrained to

be equivariant as well. Since φm takes as input the previous layer’s
encodings as well as the edges eij, this means that 1) the encodings
must contain geometric information about the state, e.g. which rota-
tion the local state is in and 2) the edge attributes contain geometric

50

information as well, i.e. they transform when the global state trans-
forms (Appendix 3.B).

Lg

[
m(l)

i

]
=
|Ni |

∑
j=1

φm

(
Ug
[
eij
]

, Lg[f (l)j]
)

(3.10)

Note that this constraint is satisfied when φm is equivariant, since lin-
ear combinations of equivariant functions are also equivariant [35].
Putting this all together, the local encoding f (l)i for each agent is equiv-
ariant to the set of edge rotations and the set of rotations of encodings
in the previous layer. For more details, see Appendix 3.B. Thus, we
now have the general formulation of Multi-Agent MDP Homomor-
phic Networks. At execution time, the distributed nature of Multi-
Agent MDP Homomorphic Networks allows them to be copied onto
different devices and messages exchanged between agents only locally,
while still enforcing the global symmetries.

Multi-Agent MDP Homomorphic Network Architecture

Multi-Agent MDP Homomorphic Networks consist of equivariant lo-
cal observation encoders φe : Si → R|G|×D, where G is the group,
|G| is its size, and D the dimension of the encoding, equivariant lo-
cal message functions φm : E × R|G|×D → R|G|×F where F is di-
mension of the message encoding, equivariant local update functions
φu : R|G|×D ×R|G|×F → R|G|×D, and equivariant local policy predic-
tors φπ : R|G|×D → Π(Ai). Take the example of multi-agent traffic
light control with 90 degree rotation symmetries, which we evaluate
on in Section 3.5. In this setting, we wish to constrain φe to be equiv-
ariant to rotations Rg of the local observations. We will require the
outputs of φe to permute according to L−1

g whenever the input rotates
by Rg.

Lg [φe(si)] = φe(Rg [si]) ∀g ∈ G (3.11)

This has the form of a standard equivariance constraint, which allows
conventional approaches to enforcing group equivariance, e.g. [34].
In this chapter, we will enforce group equivariance using the Sym-
metrizer [173]. Before training, the Symmetrizer enforces group (e.g.
rotational) symmetries by projecting neural network weights onto an
equivariant subspace, and then uses SVD to find a basis for the equiv-
ariant subspace. Then, during and after training, the weight matrix of
the neural network is realised as a linear combination of equivariant
basis weights, and the coefficients of the linear combination are up-
dated during training with PPO [153]. We use ReLU non-linearities
and regular representations. For more details on the Symmetrizer, we
refer the reader to [173].

51

After encoding the input observations with the equivariant encoding
function φe, we have an equivariant encoding of the local states that
has a compositional form: the rotation of the state is represented by the
ordering of group channels (see [173]) and the other state features are
represented by the information in those channels. Similarly, we con-
strain the message update functions to be equivariant to the permuta-
tion Lg in the group channels of the state encodings and the rotation
Ug of a difference vector eij, representing the edge (i, j):

Lg

[
φm

(
eij, f (l)j

)]
= φm

(
Ug
[
eij
]

, Lg

[
f (l)j

])
(3.12)

Since linear combinations of equivariant functions are equivariant as
well [35], the aggregated message m(l)

i = ∑
|Ni |
j mj→i is equivariant too.

While eij and f (l)j transform under the same group G, they do not
transform under the same group action: eij is a vector that transforms

with a rotation matrix, whereas f (l)j transforms with a permutation of
group channels. The question arises how to build group equivariant
layers that transform both the edge and the agent features appropri-
ately. The method we use is to build equivariant layers using direct
sum representations, where the representations Ug and Lg are com-
bined as follows:

Tg = Ug ⊕ Lg =

[
Ug 0
0 Lg

]
(3.13)

where 0 represents a zero-matrix of the appropriate size. Consider a

weight matrix W l acting on

[
eij

f (l)j

]
. The equivariance constraint then

becomes W(l)Tg = LgW(l).
To preserve the geometric information coming from the messages, the
node update function is similarly constrained to be equivariant. Im-
portantly, the permutation on the outputs of φu must match the per-
mutation on the inputs of the next layer’s φm (i.e. the output of one
layer must use the same group representation as the input of the next
layer). This ensures that we can add multiple layers together while
preserving the geometric information. In practice, it is convenient to
use a single representation Lg for all permutation representations.

Lg

[
φu(f (l)i , m(l)

i)
]
= φu

(
Lg[f (l)i], Lg[m

(l)
i]
)

(3.14)

Finally, after M layers (M message passing rounds), we output local
equivariant policies based on the state encodings at layer M using local
policy network π:

πi

(
Lg

[
f (M)
i

])
= Pg

[
πi

(
f (M)
i

)]
(3.15)

52

Here, Pg is the permutation representation on the actions of the indi-
vidual agent, e.g. if in a grid world the state is flipped, Pg is the matrix
that permutes the left and right actions accordingly.

3.5 Experiments

The evaluation of Multi Agent MDP Homomorphic networks has a
singular goal: to investigate and quantify the effect of distributed ver-
sions of global equivariance in symmetric cooperative multi-agent re-
inforcement learning. We compare to three baselines. The first is a
non-homomorphic variant of our network. This is a standard MPN,
which is a permutation equivariant multi-agent graph network but
not equivariant to global rotations. The other two are variants with
symmetric data augmentation, in the spirit of [107, 99]. For a stochas-
tic data augmentation baseline, on each forward pass one of the group
elements is sampled and used to transform the input, and appropri-
ately transform the output as well. For a full augmentation baseline,
every state and policy is augmented with all its rotations in the group.
For evaluation, we use the common centralized training, decentralized
execution paradigm [100, 133] (see Appendix 3.A for more details).
We train in a centralized fashion, with PPO [153], which will adjust
the coefficients of the weight matrices in the network. The informa-
tion available to the actors and critics is their local information and the
information received from neighbors. We first evaluate on a wildlife
monitoring task, a variant of predator-prey type problems with pixel-
based inputs where agents can have information none of the other
agents have. Additionally, we evaluate the networks on the more com-
plex coordination problem of traffic light control, with pixel-based in-
puts. We focus on C4 as the discrete group to investigate whether
equivariance improves multi-agent systems, as C4 has been shown to
be effective in supervised learning and single-agent settings.

Wildlife Monitoring

0 200 400 600 800 1000
Time steps (x 500)

3

2

1

0

1

2

3

Av
er

ag
e

Re
tu

rn

Standard MPN
Augmented MPN
Equivariant MPN

(a) 3 agents.

0 200 400 600 800 1000
Time steps (x 500)

3

2

1

0

1

2

3

Av
er

ag
e

Re
tu

rn

Standard MPN
Augmented MPN
Equivariant MPN

(b) 4 agents.

Figure 3.5.1: Results for the dis-
tributed drone wildlife monitoring
task. 25%, 50% and 75% quan-
tiles shown over 15 random seeds.
All approaches tuned over 6 learn-
ing rates.

53

Setup We evaluate on a distributed wildlife monitoring setup, where
a set of drones has to coordinate to trap poachers. To trap a poacher,
one drone has to hover above them while the other assists from the
side, and for each drone that assists the team receives +1 reward. Two
drones cannot be in the same location at the same time. Since the
drones have only cameras mounted at the bottom, they cannot see
each other. The episode ends when the poacher is trapped by at least 2

drones, or 100 time steps have passed. On each time step the team gets
-0.05 reward. All agents (including the poacher) can stand still or move
in the compass directions. The poacher samples actions uniformly. We
train for 500k time steps. The drones can send communications to
drones within a 3 by 3 radius around their current location, meaning
that the problem is a distributed MMDP. Due to changing agent loca-
tions and the limited communication radius, the communication graph
is dynamic and can change between time steps. The observations are
21 by 21 images representing a agent-centric view of a 7 by 7 toroidal
grid environment that shows where the target is relative to the drone.
While the grid is toroidal, the communication distance is not: at the
edges of the grid, communication is blocked. This problem exhibits 90

degree rotations: when the global state rotates, the agents’ local poli-
cies should permute, and so should the probabilities assigned to the
actions in the local policies.

Results Results for this task are shown in Figure 3.5.1, with on the y-
axis the average return and on the x-axis the number of time steps. In
both the 3-agent and 4-agent case, using a Multi-Agent MDP Homo-
morphic Network improves compared to using MPNs without sym-
metry information, and compared to using symmetric data augmen-
tation. We conclude that in the proposed task, our approach learns
effective joint policies in fewer environment interactions compared to
the baselines.

Traffic Light Control

For a second experiment, we focus on a more complex coordination
problem: reducing vehicle wait times in traffic light control. Traffic
light control constitutes a longstanding and open problem (see [185]
for an overview): not only is the optimal coordination strategy non-
obvious, traffic light control is a problem where wrong decisions can
quickly lead to highly suboptimal states due to congestion. We use this
setting to answer the following question: does enforcing symmetries
help in complex coordination problems?

54

0 200 400 600 800 1000
Time steps (x 500)

8

9

10

11

12

13

14

15

16

17
Av

er
ag

e
W

ai
t T

im
e

Standard MPN
Stoch. Augmented MPN
Full Augmented MPN
Equivariant MPN

Figure 3.5.2: Average vehicle wait
times for distributed settings of the
traffic light control task. Graphs
show 25%, 50% and 75% quantiles
over 20 independent training runs.
All approaches tuned over 6 learn-
ing rates.

Setup We use a traffic simulator with four traffic lights. On each of
eight entry roads, for 100 time steps, a vehicle enters the simulation on
each step with probability 0.1. Each agent controls the lights of a single
intersection and has a local action space of (grgr, rgrg), indicating
which two of its four lanes get a red or green light. Vehicles move
at a rate of one unit per step, unless they are blocked by a red light
or a vehicle. If blocked, the vehicle needs one step to restart. The
goal is reducing the average vehicle waiting time. The simulation ends
after all vehicles have exited the system, or after 500 steps. The team
reward is − 1

1000
1
C ∑c∈C w(c), with C the vehicles in the system and

w(c) vehicle c’s cumulative waiting time.

Results We show results in Figure 3.5.2. While the standard MPN
architecture had reasonable performance on the toy problem, it takes
many environment interactions to improve the policy in the more com-
plex coordination problem presented by traffic light control. Adding
data augmentation helps slightly. However, we see that enforcing
the global symmetry helps the network find an effective policy much
faster. In this setting, the coordination problem is hard to solve: in ex-
periments with centralized controllers, the standard baseline performs
better, though it is still slower to converge than the equivariant cen-
tralized controller. Overall, enforcing global symmetries in distributed
traffic light control leads to effective policies in fewer environment in-
teractions.

55

3.6 E(3) Equivariance

Many tasks can benefit from making use of their inherent symmetries
and structure. We saw in this Chapter that we can construct graph
networks that are equivariant to global transformations while still al-
lowing for distributed execution. Such networks make use of both the
structure and the symmetry of cooperative multi-agent problems.

In this Chapter and Chapter 2, we consider symmetries in decision
making problems, looking in particular at discrete groups of 2 or 4

elements using regular representations. However, many real world
problems exhibit symmetries that are continuous, for example as is
the case in robotics [203, 179, 136] or molecular design [157]. For that
reason, later work has looked at a broader class of symmetries in single
agent learning, such as the SE(2) [203], SO(2) [179], SO(3) [136, 157]
groups. In this Section, we discuss Steerable E(3) Equivariant graph
networks (SEGNNs), which take the ideas presented in this Chapter a
step further: we consider the E(3) group, the group of all isometries of
3d Euclidean space (rotations, reflections, and translations). SEGNNs
are a class of E(3) equivariant graph neural networks that use non-
linear convolutions. SEGNNs show promising results on physics and
chemistry tasks, where for example molecular data tends to exhibit
both graph structure and E(3) symmetry. See Figure 3.6.1.

Figure 3.6.1: Equivariance di-
agram for equivariant operator
φ for 3D molecular graph with
steerable node features. If the
molecule rotates, the node fea-
tures do as well.

Earlier work considered equivariant convolutional neural networks [34,
35, 193, 32, 98, 187, 14, 13, 186]. Similarly, there is earlier work on
equivariant GNN architectures [195, 101, 166, 7, 52, 50]. It turns out
that where early work tends to linearly transform the node and edge
features2 followed by a non-linearity, Multi-Agent MDP Homomor-

2 Pseudo-linearly for methods using at-
tention [52, 7]

phic Networks and SEGNNs use non-linear message aggregation. SEG-
NNs in particular also use steerable messages (rather than invariant or
discrete equivariant messages). SEGNNs use non-linear group convo-
lutions, and can be seen as a generalization of EGNNs [147], which
sends invariant messages, where SEGNNs send equivariant messages.
SEGNNs are able to perform non-linear convolutions with rotation-

56

ally invariant scalars or covariant vectors or tensors. Since molecu-
lar data sets can include node information such as velocity, force or
atomic spin, SEGNNs are evaluated on n-Body toy datasets, QM9, and
OC20, where they are able to use the geometric and physical attributes
present in the data. SEGNNs set a new state of the art on n-Body toy
datasets. Additionally, SEGNNs are a new state of the art in ISRE of
OC20 and competitive on QM9. For more details, see [23]. Seeing the
potential of SEGNNs on molecular prediction tasks, it is likely they can
provide possible benefits when adapted into Multi-agent MDP Homo-
morphic Networks for E(3) Equivariant multi-agent policy networks
following the ideas in this Chapter, for example for applications in
robotics or molecular design.

3.7 Conclusion

We consider distributed cooperative multi-agent systems that exhibit
global symmetries. In particular, we propose a factorization of global
symmetries into symmetries on local observations and local interac-
tions. On this basis, we propose Multi-Agent MDP Homomorphic
Networks, a class of policy networks that allows distributed execution
while being equivariant to global symmetries. We compare to non-
equivariant distributed networks, and show that global equivariance
improves data efficiency on both a predator-prey variant, and on the
complex coordination problem of traffic light control.

Scope We focus on discrete groups. For future work, this could be
generalized by using steerable representations, at the cost of not being
able to use pointwise nonlinearities. We also focus on discrete actions.
This might be generalized by going beyond action permutations, e.g.,
for 2D continuous worlds a continuous rotation of the actions. Fur-
thermore, our approach uses group channels for each layer (regular
representations). For small groups this is not an issue, but for much
larger groups this would require infeasible computational resources.
Finally, this work has focused on exact symmetries and considers im-
perfect symmetries and violations of symmetry constraints a promis-
ing future topic.

57

3.8 Ethics Statement

Our work has several potential future applications, e.g. in autonomous
driving, decentralized smart grids or robotics. Such applications hope-
fully have a positive societal impact, but there are also risks of nega-
tive societal impact: through the application itself (e.g. military), labor
market impact, or by use in safety-critical applications without proper
verification and validation. These factors should be taken into account
when developing such applications.

3.9 Reproducibility Statement

To ensure reproducibility, we describe our setup in the Experiments
section and we include hyperparameters, group actions, and architec-
ture details in the Appendix. We will also make our code publicly
available.

59

Chapter Appendix

3.A Message Passing Networks, Communication, and Dis-
tribution

Message passing algorithms are commonly used to coordinate be-
tween agents while allowing for factorization of the global decision
making function [64, 105, 171, 18]. Message passing networks approx-
imate such message passing algorithms [199, 148]. Thus, we can view
message passing networks as a type of learned communication be-
tween coordinating agents. Message passing networks can be executed
using only local communication and computation. To see that this is
the case, consider the equations that determine the message passing
networks in this paper:

f (0)i = φe(si) (3.16)

m(l)
j→i = φm(eij, f (l)j) (3.17)

m(l)
i =

|Ni |

∑
j

mj→i (3.18)

f (l+1)
i = φu(f (l)i , m(l)

i) (3.19)

for all agents i and layers (message passing rounds) l. In Eq. 3.16,
each agent encodes its local observation si into a local feature vector
f (0)i . In Eq. 3.17, each agent j computes its message to agent i using its

own local feature vector f (l)j and its shared edge features eij = xi − xj.
After agent i receives its neighbors’ messages, it aggregates them in
Eq. 3.18. Finally, in Eq. 3.19 agent i updates its local feature vector
using the aggregated message and its local feature vector. Clearly,
every step in this network requires only local computation and local
communication, therefore allowing the network to be distributed over
agents at execution time.

60

3.B Equivariance of Proposed Message Passing Layers

Recall that eij = xi − xj (the difference between the locations of agent i
and agent j). Therefore,

Ug[eij] = Ug[xi − xj] = Ug[xi]−Ug[xj] (3.20)

So, when both agent i and agent j are moved to a location transformed
by Ug, the edge features eij are transformed by Ug as well. If all agent
positions and observations rotate by the same underlying group, this
means the full system has rotated. In this paper, we place equivariance
constraints on the message function:

Kg[∑
j

φm(eij, f j)] = ∑
j

φm(Ug[eij], Lg[f j]) (3.21)

This means that the messages are only permuted by Kg if both the
local features f j and the edge features eij are transformed (by Lg and
Ug respectively). To see that the proposed message passing layers are
equivariant to transformations on agent features and edge features,
consider the following example. Assume we have a message passing
layer φ consisting of node update function φu and message update
function φm, such that with agent features { fi}, and edge features {eij},
the output for agent i is given by

φ(i) ({eij}, { f j}
)
= φu (fi, mi) (3.22)

= φu

(
fi, ∑

j
φm
(
eij, f j

))
(3.23)

Assume φu and φm are constrained to be equivariant in the following
way:

Pg[φu(fi, mi)] = φu(Lg[fi], Kg[mi]) (3.24)

Kg[∑
j

φm(eij, f j)] = ∑
j

φm(Ug[eij], Lg[f j]) (3.25)

61

for group elements g ∈ G. Then, for layer φ:

Pg

[
φ(i) ({eij}, { f j}

)]
= Pg [φu (fi, mi)] (3.26)

= Pg

[
φu

(
fi, ∑

j
φm
(
eij, f j

))]
(3.27)

= φu

(
Lg [fi] , Kg

[
∑

j
φm
(
eij, f j

)])
(3.28)

(using Eq. 3.24) (3.29)

= φu

(
Lg [fi] , ∑

j
φm
(
Ug
[
eij
]

, Lg
[

f j
]))

(3.30)

(using Eq. 3.25) (3.31)

= φ(i) ({Ug
[
eij
]
}, {Lg

[
f j
]
}
)

(3.32)

3.C Discrete Rotations of Continuous Vectors

Here we outline how to build weight matrices equivariant to discrete
rotations of continuous vectors. Let eij = xj − xi be an arbitrary, con-
tinuous difference vector between the coordinates of agent j and the
coordinates of agent i. Then this difference vector transforms under 90

degree rotations using the group of standard 2D rotation matrices of
the form

Rg = R(θ) =

[
cos θ − sin θ

sin θ cos θ

]
(3.33)

for θ ∈ [0, π
2 , π, 3π

2]. A weight matrix W is now equivariant to 90

degree rotations of eij if

KgWeij = WRgeij (3.34)

with {Kg}g∈G e.g. a permutation matrix representation of the same
group. So,

W = K−1
g WRg (3.35)

which we can solve using standard approaches.

3.D Experimental Details

For all approaches, including baselines, we run at least 15 random
seeds for 6 different learning rates, {0.001, 0.003, 0.0001, 0.0003, 0.00001,

62

0.00003}, and report the best learning rate for each. Other hyperpa-
rameters are taken as default in the codebase [159, 173].

Learning Rates Reported

After tuning the learning rate, we report the best one for each ap-
proach. See Table 3.D.1.

Distributed Settings Standard Augmented Equivariant

Drones, 3 agents 0.001 0.0003 0.001

Drones, 4 agents 0.0003 0.001 0.001

Traffic, 4 agents 0.0001 0.0001 0.0001

Table 3.D.1: Best learning rates
for distributed settings for
MPNs.

Assets Used

• Numpy [68] 1.19.2: BSD 3-Clause "New" or "Revised" License;

• PyTorch [137] 1.2.0: Modified BSD license;

• RLPYT [159]: MIT license;

• MDP Homomorphic Networks & Symmetrizer [173]: MIT license.

3.E Architectural details

Architectures are given below and were chosen to be as similar as
possible between different approaches, keeping the number of train-
able parameters comparable between approaches. We chose 2 message
passing layers to allow for 2 message passing hops. For the message
passing networks, we use L1-normalization of the adjacency matrix.

Architectural Overview

The global structure of our network is given in Figure 3.E.1.

G-CNN

z3

Equivariant
Message
Passing

ⲡN

ⲡ3

ⲡ2

ⲡ1

G-CNN

G-CNN

G-CNN

z2

z1

zN

xNx2x1 x3
...

...

...

vN

v3

v2

v1

...

Figure 3.E.1: General overview
of Multi-Agent MDP Homo-
morphic Networks. G-CNN
refers to a group-equivariant
CNN encoder. Equivariant
message passing refers to the
proposed equivariant message
passing networks. Encoding lo-
cal states with group-CNNs en-
sure the state encodings zi are
group-equivariant. The loca-
tions xi are input to the equiv-
ariant message passing network.

63

Architectures

Wildlife Monitoring
Listing 3.1: Equivariant Network Architecture for Centralized Drones

1 EqConv2d(repr_in=1, channels_in=m, repr_out=4, channels_out=b 16√
4
c,

2 filter_size=(7, 7), stride=2, padding=0)

3 ReLU()

4 EqConv2d(repr_in=4, channels_in=b 16√
4
c, repr_out=4, channels_out=b 32√

4
c,

5 filter_size=(5, 5), stride=1, padding=0)

6 ReLU()

7 GlobalMaxPool()

8 EqLinear(repr_in=4, channels_in=b 32√
4
c, repr_out=4, channels_out=b 128√

4
c)

9 ReLU()

10 EqLinear(repr_in=4, channels_in=b 128√
4
c, repr_out=5, channels_out=b 64√

4
c)

11 ReLU()

12 ModuleList([EqLinear(repr_in=4, channels_in=b 64√
4
c, repr_out=5,

13 channels_out=1) for i in range(m)])

14 EqLinear(repr_in=4, channels_in=b 64√
4
c, repr_out=1, channels_out=1)

Listing 3.2: CNN Architecture for Centralized Drones

1 Conv2d(channels_in=m, channels_out=16,

2 filter_size=(7, 7), stride=2, padding=0)

3 ReLU()

4 Conv2d(channels_in=16,channels_out=32,

5 filter_size=(5, 5), stride=1, padding=0)

6 ReLU()

7 GlobalMaxPool()

8 Linear(channels_in=32, channels_out=256)

9 ReLU()

10 ModuleList([Linear(channels_in=256,

11 channels_out=5) for i in range(m)])

12 Linear(channels_in=256, channels_out=1)

Listing 3.3: Equivariant Network Architecture for Distributed Drones

1 EqConv2d(repr_in=1, channels_in=1, repr_out=4, channels_out=b 16√
4
c,

2 filter_size=(7, 7), stride=2, padding=0)

3 ReLU()

4 EqConv2d(repr_in=4, channels_in=b 16√
4
c, repr_out=4, channels_out=b 32√

4
c,

5 filter_size=(5, 5), stride=1, padding=0)

6 ReLU()

7 GlobalMaxPool()

8 EqMessagePassingLayer(repr_in=4+4+2, channels_in=b 32√
4
c, repr_out=4,

9 channels_out=b 64√
4
c)

10 ReLU()

11 EqMessagePassingLayer(repr_in=4+4+2, channels_in=b 64√
4
c, repr_out=4,

12 channels_out=b 64√
4
c)

64

13 ReLU()

14 EqMessagePassingLayer(repr_in=4, channels_in=b 64√
4
c, repr_out=5,

15 channels_out=1)

16 EqMessagePassingLayer(repr_in=4, channels_in=b 64√
4
c, repr_out=1,

17 channels_out=1)

Listing 3.4: MPN Architecture for Distributed Drones

1 Conv2d(channels_in=1, channels_out=16,

2 filter_size=(7, 7), stride=2, padding=0)

3 ReLU()

4 Conv2d(channels_in=16, channels_out=32,

5 filter_size=(5, 5), stride=1, padding=0)

6 ReLU()

7 GlobalMaxPool()

8 MessagePassingLayer(channels_in=32+32+2, channels_out=64)

9 ReLU()

10 MessagePassingLayer(channels_in=64+64+2, channels_out=64)

11 ReLU()

12 Linear(channels_in=64, channels_out=5)

13 Linear(channels_in=64, channels_out=1)

Traffic Light Control
Listing 3.5: Equivariant Network Architecture for Centralized Traffic

1 EqConv2d(repr_in=1, channels_in=3, repr_out=4, channels_out=b 16√
4
c,

2 filter_size=(7, 7), stride=2, padding=0)

3 ReLU()

4 EqConv2d(repr_in=4, channels_in=b 16√
4
c, repr_out=4, channels_out=b 32√

4
c,

5 filter_size=(5, 5), stride=1, padding=0)

6 ReLU()

7 GlobalMaxPool()

8 EqLinear(repr_in=4, channels_in=b 32√
4
c, repr_out=4, channels_out=b 128√

4
c)

9 ReLU()

10 EqLinear(repr_in=4, channels_in=b 128√
4
c, repr_out=5, channels_out=b 64√

4
c)

11 ReLU()

12 EqLinear(repr_in=4, channels_in=b 64√
4
c, repr_out=8, channels_out=1)

13 EqLinear(repr_in=4, channels_in=b 64√
4
c, repr_out=1, channels_out=1)

Listing 3.6: CNN Architecture for Centralized Traffic

1 Conv2d(channels_in=3, channels_out=16,

2 filter_size=(7, 7), stride=2, padding=0)

3 ReLU()

4 Conv2d(channels_in=16,channels_out=32,

5 filter_size=(5, 5), stride=1, padding=0)

6 ReLU()

7 GlobalMaxPool()

8 Linear(channels_in=32, channels_out=256)

65

9 ReLU()

10 Linear(channels_in=256, channels_out=8)

11 Linear(channels_in=256, channels_out=1)

Listing 3.7: Equivariant Network Architecture for Distributed Traffic

1 EqConv2d(repr_in=1, channels_in=3, repr_out=4, channels_out=b 16√
4
c,

2 filter_size=(7, 7), stride=2, padding=0)

3 ReLU()

4 EqConv2d(repr_in=4, channels_in=b 16√
4
c, repr_out=4, channels_out=b 32√

4
c,

5 filter_size=(5, 5), stride=1, padding=0)

6 ReLU()

7 GlobalMaxPool()

8 EqMessagePassingLayer(repr_in=4+4+2, channels_in=b 32√
4
c, repr_out=4,

9 channels_out=b 64√
4
c)

10 ReLU()

11 EqMessagePassingLayer(repr_in=4+4+2, channels_in=b 64√
4
c, repr_out=4,

12 channels_out=b 64√
4
c)

13 ReLU()

14 EqMessagePassingLayer(repr_in=4, channels_in=b 64√
4
c, repr_out=2,

15 channels_out=1)

16 EqMessagePassingLayer(repr_in=4, channels_in=b 64√
4
c, repr_out=1,

17 channels_out=1)

Listing 3.8: MPN Architecture for Distributed Traffic

1 Conv2d(channels_in=3, channels_out=16,

2 filter_size=(7, 7), stride=2, padding=0)

3 ReLU()

4 Conv2d(channels_in=16, channels_out=32,

5 filter_size=(5, 5), stride=1, padding=0)

6 ReLU()

7 GlobalMaxPool()

8 MessagePassingLayer(channels_in=32+32+2, channels_out=64)

9 ReLU()

10 MessagePassingLayer(channels_in=64+64+2, channels_out=64)

11 ReLU()

12 Linear(channels_in=64, channels_out=2)

13 Linear(channels_in=64, channels_out=1)

Group Actions

Here we list the group actions used in different equivariant layers
throughout our experiments. For all equivariant layers, we use the
Symmetrizer [173] to find equivariant weight bases.

Rotation-equivariant Filters For all equivariant encoder networks, we
create 90 degree rotation-equivariant filters using np.rot90.

66

Group Actions for Wildlife Monitoring

Linear layers Permutation matrices representing the following permu-
tations:
e = [0, 1, 2, 3]
g1 = [3, 0, 1, 2]
g2 = [2, 3, 0, 1]
g3 = [1, 2, 3, 0]

Policy layers, centralized Permutation matrices representing the fol-
lowing permutations:
e = [0, 1, 2, 3, 4]
g1 = [0, 2, 3, 4, 1]
g2 = [0, 3, 4, 1, 2]
g3 = [0, 4, 1, 2, 3]

Value layers, centralized Permutation matrices representing the follow-
ing permutations:
e = [1]
g1 = [1]
g2 = [1]
g3 = [1]

Message Passing Layers Acting on state features, permutation matrices
representing the following permutations:
e = [0, 1, 2, 3]
g1 = [3, 0, 1, 2]
g2 = [2, 3, 0, 1]
g3 = [1, 2, 3, 0]
Acting on edge features, the following rotation matrices:
e=np.eye(2)
g1=np.array([[0, -1], [1, 0]])

g2=np.array([[-1, 0], [0, -1]])

g3=np.array([[0, 1], [-1, 0]])

Policy layers, distributed Permutation matrices representing the fol-
lowing permutations:
e = [0, 1, 2, 3, 4]
g1 = [0, 2, 3, 4, 1]
g2 = [0, 3, 4, 1, 2]

67

g3 = [0, 4, 1, 2, 3]

Value layers, distributed Permutation matrices representing the follow-
ing permutations:
e = [1]
g1 = [1]
g2 = [1]
g3 = [1]

Group Actions for Traffic Light Control

Linear layers Permutation matrices representing the following permu-
tations:
e = [0, 1, 2, 3]
g1 = [3, 0, 1, 2]
g2 = [2, 3, 0, 1]
g3 = [1, 2, 3, 0]

Policy layers, centralized Permutation matrices representing the fol-
lowing permutations:
e = [0, 1, 2, 3, 4, 5, 6, 7]
g1 = [5, 4, 1, 0, 7, 6, 3, 2]
g2 = [6, 7, 4, 5, 2, 3, 0, 1]
g3 = [3, 2, 7, 6, 1, 0, 5, 4]

Value layers, centralized Permutation matrices representing the follow-
ing permutations:
e = [1]
g1 = [1]
g2 = [1]
g3 = [1]

Message Passing Layers Acting on state features, permutation matrices
representing the following permutations:
e = [0, 1, 2, 3]
g1 = [3, 0, 1, 2]
g2 = [2, 3, 0, 1]
g3 = [1, 2, 3, 0]
Acting on edge features, the following rotation matrices:

68

e =np.eye(2)

g1 =np.array([[0, -1], [1, 0]])

g2 =np.array([[-1, 0], [0, -1]])

g3 =np.array([[0, 1], [-1, 0]])

Policy layers, distributed Permutation matrices representing the fol-
lowing permutations:
e = [0, 1]
g1 = [1, 0]
g2 = [0, 1]
g3 = [1, 0]

Value layers, distributed Permutation matrices representing the follow-
ing permutations:
e = [1]
g1 = [1]
g2 = [1]
g3 = [1]

69

Part II

Structure

71

4
Plannable Approximations to
MDP Homomorphisms

4.1 Introduction

For this part of the dissertation, we turn our attention to the problem of
learning representations for decision making problems. In this Chap-
ter, we learn the structure of the environment, and propose the concept
of action-equivariance as a generalization of group-equivariance. In the
following Chapter we will capture the structure in individual states.

Dealing with high dimensional state spaces and unknown environ-
mental dynamics presents an open problem in decision making [70].
Classical dynamic programming approaches require knowledge of en-
vironmental dynamics and low dimensional, tabular state spaces [140].
Recent deep reinforcement learning methods on the other hand offer
good performance, but often at the cost of being unstable and sample-
hungry [70, 124, 77, 125]. The deep model-based reinforcement learn-
ing literature aims to fill this gap, for example by finding policies after
learning models based on input reconstruction [103, 66, 202, 36], by us-
ing environmental models in auxiliary losses [45, 77], or by forcing net-
work architectures to resemble planning algorithms [164, 132]. While
effective in learning end-to-end policies, these types of approaches
are not forced to learn good representations and may thus not build
proper environmental models. In this work, we focus on learning rep-
resentations of the world that are suitable for exact planning methods.

72

To combine dynamic programming with the representational power of
deep networks, we factorize the online decision-making problem into
a self-supervised model learning stage and a dynamic programming
stage.

We do this under the assumption that good representations minimize
MDP metrics [57, 46, 113, 165]. While such metrics have desirable theo-
retical guarantees, they require an enumerable state space and knowl-
edge of the environmental dynamics, and are thus not usable in many
problems. To resolve this issue, we propose to learn representations
using the more flexible notion of action equivariant mappings, where
the effects of actions in input space are matched by equivalent action
effects in the latent space. See Figure 4.1.1.

Figure 4.1.1: Visualization of
the notion of equivariance un-
der actions. We say Z is an
action equivariant mapping if
Z(T(s, a)) = Ks

g(Z(s), Ās(a)).

We make the following contributions. First, we propose learning an
equivariant map and corresponding action embeddings. This corre-
sponds to using MDP homomorphism metrics [165] of deterministic
MDPs, enabling planning in the homomorphic image of the original
MDP. Second, we prove that for deterministic MDPs, when our loss
is zero, we have an MDP homomorphism [143]. This means that the
resulting policy can be lifted to the original MDP. Third, we provide
experimental evaluation in a variety of settings to show 1) that we can
recover the graph structure of the input MDP, 2) that planning in this

73

abstract space results in good policies for the original space, 3) that
we can change to arbitrary new goal states without further gradient
descent updates and 4) that this works even when the input states
are continuous, or when generalizing to new instances with the same
dynamics.

4.2 Background

Markov Decision Processes An infinite horizon Markov Decision Pro-
cess (MDP) is a tuple M = (S ,A, R, T, γ), where s ∈ S is a Markov
state, a ∈ A is an action that an agent can take, R : S × A → R is
a reward function that returns a scalar signal r defining the desirabil-
ity of some observed transition, 0 ≤ γ ≤ 1 is a discount factor that
discounts future rewards exponentially and T : S × A × S → [0, 1]
is a transition function, that for a pair of states and an action assigns
a probability of transitioning from the first to the second state. The
goal of an agent in an MDP is to find a policy π : S × A → [0, 1],
a function assigning probabilities to actions in states, that maximizes
the return Gt = ∑∞

k=0 γkrt+k+1. The expected return of a state, action
pair under a policy π is given by a Q-value function Qπ : S ×A → R

where Qπ(s, a) = Eπ [Gt|st = s, at = a]. The value of a state under an
optimal policy π∗ is given by the value function V∗ : S → R, defined
as V∗ = maxa Q∗(s, a) under the Bellman optimality equation.

Value Iteration Value Iteration (VI) is a dynamic programming algo-
rithm that finds Q-values in MDPs, by iteratively applying the Bellman
optimality operator. This can be viewed as a graph diffusion where
each state is a vertex and transition probabilities define weighted edges.
VI is guaranteed to find the optimal policy in an MDP. For more de-
tails, see [140].

Bisimulation Metrics To enable computing optimal policies in MDPs
with very large or continuous state spaces, one approach is aggregat-
ing states based on their similarity in terms of environmental dynam-
ics [38, 113]. A key concept is the notion of stochastic bisimulations for
MDPs, which was first introduced by [38]. Stochastic bisimulation de-
fines an equivalence relation on MDP states based on matching reward
and transition functions, allowing states to be compared to each other.
Later work [46] observes that the notion of stochastic bisimulation is
too stringent (the dynamics must match exactly) and proposes using a

74

more general bisimulation metric instead, with the general form

d(s, s′) = max
a

(
cR|R(s, a)− R(s′, a)|+ cTdP(T(s, a), T(s′, a))

)
(4.1)

where cR and cT are weighting constants, T(·, a) is a distribution over
next states and dP is some probability metric, such as the Kantorovich
(Wasserstein) metric. Such probability metrics are recursively com-
puted. For more details, see [46]. The bisimulation metric provides
a distance between states that is not based on input features but on
environmental dynamics.

MDP Homomorphism A generalization of the mapping induced by
bisimulations is the notion of MDP homomorphisms [143]. MDP ho-
momorphisms were introduced by [141] as an extension of [38]. An
MDP homomorphism (σ, {αs|s ∈ S}) is a tuple of functions

〈
Z,
{

Ās
}〉

with Z : S → Z a function that maps states to abstract states, and
each Ās : A → Ā a state-dependent function that maps actions to ab-
stract actions, that preserves the structure of the input MDP. We use
the definition given by [143]:

Definition 5 (Stochastic MDP Homomorphism) A Stochastic MDP ho-
momorphism from a stochastic MDPM = 〈S ,A, T, R〉 to an MDP M̄ =〈
Z , Ā, Ks

g, R̄
〉

is a tuple (σ, {αs|s ∈ S}) =
〈

Z,
{

Ās
}〉

, with

• Z : S → Z the state embedding function, and

• Ās : A → Ā the action embedding functions,

such that the following identities hold:

∀s,s′∈S ,a∈A Ks
g(Z(s′)|Z(s), Ās(a)) = ∑

s′′∈[s′]Z
T(s′′|s, a) (4.2)

∀s∈S ,a∈A R̄(Z(s), Ās(a)) = R(s, a) (4.3)

Here, [s′]Z = Z−1(Z(s′)) is the equivalence class of s′ under Z.

We specifically consider deterministic MDPs. In that case:

Definition 6 (Deterministic MDP Homomorphism) A Deterministic MDP
homomorphism from a deterministic MDPM = 〈S ,A, T, R〉 to an MDP
M̄ =

〈
Z , Ā, Ks

g, R̄
〉

is a tuple (σ, {αs|s ∈ S}) =
〈

Z,
{

Ās
}〉

, with

• Z : S → Z the state embedding function, and

• Ās : A → Ā the action embedding functions,

75

such that the following identities hold:

∀s,s′∈S ,a∈A T(s, a) = s′ =⇒ Ks
g(Z(s), Ās(a)) = Z(s′) (4.4)

∀s∈S ,a∈A R̄(Z(s), Ās(a)) = R(s, a) (4.5)

The states s are organized into equivalence classes under Z if they fol-
low the same dynamics in z-space. The MDP M̄ is referred to as the
homomorphic image ofM under h [143]. An important property of MDP
homomorphisms is that a policy optimal in homomorphic image M̄
can be lifted to an optimal policy inM [143, 69]. Looking at these def-
initions, it may be clear that MDP homomorphisms and bisimulation
metrics are closely related. The difference is that the latter measures
distances between two MDP states, while the former is a map from
one MDP to another. However, the idea of forming a distance metric
by taking a sum of the distances can be extended to homomorphisms,
as proposed by [165]:

d((s, a), (Z(s), Ās(a))) = cR|R(s, a)− R̄(Z(s), Ās(a))|
+ cTdP(ZT(s, a), Ks

g(Z(s), Ās(a))), (4.6)

with dP a suitable measure of the difference between distributions (e.g.,
Kantorovich metric), and ZT(s, a) shorthand for projecting the distri-
bution over next states into the space of Z (see [54] for details). We
refer to this as the MDP homomorphism metric.

Action-Equivariance We define a mapping Z : S → Z to be action-
equivariant if Z(T(s, a)) = T̄(Z(s), Ās(a)) and R(s, a) = R̄(Z(s), Ās(a)),
i.e. when the constraints in Eq. 4.4 and Eq. 4.5 hold.

4.3 Learning MDP Homomorphisms

We are interested in learning compact, plannable representations of
MDPs. We call MDP representations plannable if the optimal policy
found by planning algorithms such as VI can be lifted to the original
MDP and still be close to optimal. This is the case when the rep-
resentation respects the original MDP’s dynamics, such as when the
equivariance constraints in Eq. 4.4 and Eq. 4.5 hold. In this chapter we
leverage MDP homomorphism metrics to find such representations.
In particular, we introduce a loss function that enforces these equivari-

76

ance constraints, then construct an abstract MDP in the learned repre-
sentation space. We compute a policy in the abstract MDP M̄ using
VI, and lift the abstract policy to the original space. To keep things
simple, we focus on deterministic MDPs, but in preliminary experi-
ments our method performed well out of the box on stochastic MDPs.
Additionally, the framework we outline here can be extended to the
stochastic case, as [54] does for bisimulation metrics.

Learning State Representations

Here we show how to learn state representations that respect action-
equivariance. We embed the states in S into Euclidean space using a
contrastive loss based on MDP homomorphism metrics. Similar losses
have often been used in related work [54, 94, 6, 135, 51], which we
compare in Section 4.5. We represent the mapping Z using a neural
network parameterized by θ, whose output will be denoted Zθ . This
function maps a state s ∈ S to a latent representation z ∈ Z ⊆ RD.
We additionally approximate the abstract transition Ks

g by a function
T̄φ : Z × Ā → Z parameterized by φ, and the abstract rewards R̄
by a neural network R̄ζ : Z → R, parameterized by ζ, that predicts
the reward for an abstract state. From Eq. 4.5 we simplify to a state-
dependent reward using R(s) = R̄ (Z(s)) where R(s) is the reward
function that outputs a scalar value for an s ∈ S , and R̄ is its equiv-
alent in M̄. During training, we first sample a set of experience tuples
D = {(st, at, rt, st+1)}N

n=1 by rolling out an exploration policy πe for
K trajectories. To learn representations that respect Eq. 4.4 and 4.5,
we minimize the distance between the result of transitioning in ob-
servation space, and then mapping to Z , or first mapping to Z and
then transitioning in latent space (see Figure 4.1.1). Additionally, the
distance between the observed reward R(s) and the predicted reward
R̄ζ(Zθ(s)) is minimized. We thus include a general reward loss term.
We write s′n = T(sn, an), zn = Zθ(sn), and minimize

L(θ, φ, ζ) =
1
N

N

∑
n=1

[
d
(
Zθ(s′n), T̄φ(zn, Āφ(zn, an))

)
+d
(

R(sn), R̄ζ(zn)
)]

(4.7)

by randomly sampling batches of experience tuples from D. In this
chapter, we use d(z, z′) = 1

2 (z − z′)2 to model distances in Z ⊆ RD.
Here, T̄φ is a function that maps a point in latent space z ∈ Z to a
new state z′ ∈ Z by predicting an action-effect that acts on z. We adopt
earlier approaches of letting T̄φ be of the form T̄φ(z, ā) = z + Āφ(z, a),
where Āφ(z, a) is a simple feedforward network [94, 51]. Thus Āφ :
Z ×A → Ā is a function mapping from the original action space to

77

an abstract action space, and Āφ(z, a) approximates Ās(a) (Eq. 4.4).
The resulting transition loss is a variant of the loss proposed in [94].
The function R̄ζ : Z → R predicts the reward from z. Since Z, Ks

g
and R̄ are neural networks optimized with SGD, Eq. 4.7 has a triv-
ial solution where all states are mapped to the same point, especially
in the sparse reward case. When the reward function is informative,
minimizing Eq. 4.7 can suffice, as is empirically demonstrated in [54].
However, when rewards are sparse, the representations may collapse
to the trivial embedding, and for more complex tasks [54] requires a
pixel reconstruction term. In practice, earlier works use a variety of
solutions to prevent the trivial map. Approaches based on pixel recon-
structions are common [182, 183, 36, 104, 67, 85, 66, 202, 54], but there
are also approaches based on self-supervision that use alternatives to
reconstruction of input states [6, 94, 51, 135, 3, 9, 200].

To prevent trivial solutions, we use a contrastive loss, maximizing the
distance between the latent next state and the embeddings of a set of
random other states, S¬ = {sj}J

j=1 sampled from the same trajectory
on every epoch. Thus, the complete loss is

L(θ, φ, ζ) =
1
N

N

∑
n=1

[
d
(
Zθ(s′n), T̄φ(zn, Āφ(zn, an))

)
+d
(

R(sn), R̄ζ(zn)
)

+ ∑
s¬∈S¬

d¬
(
Zθ(s¬), T̄φ(zn, Āφ(zn, an))

)]
(4.8)

where d¬ is a negative distance function. Similar to [94], we use the
hinge loss d¬(z, z′) = max(0, ε− d(z, z′)) to prevent the negative dis-
tance from growing indefinitely. Here, ε is a parameter that controls
the scale of the embeddings. To limit the scope of this chapter, we con-
sider domains where we can find a reasonable data set of transitions
without considering exploration. Changing the sampling policy will
introduce bias in the data set, influencing the representations. Here
we evaluate if we can find plannable MDP homomorphisms and leave
the exploration problem to future work.

Constructing the Abstract MDP

After learning a structured latent space, we find abstract MDP M̄ by
constructing reward and transition functions from Zθ , T̄φ, R̄ζ .

Abstract States

Core to our approach is the idea that exploiting action-equivariance
constraints leads to nicely structured abstract spaces that can be planned

78

Figure 4.3.1: Schematic
overview of our method.
We learn the map Z from S to
Z and discretize Z to obtain
X . We plan in X and use
interpolated Q-values to obtain
a policy in S .

in. Of course the space Z is still continuous, which requires either
more complex planning methods, or state discretization. In this chap-
ter we aim for the latter, simpler, option, by constructing a discrete
set X of (‘prototype’) latent states in Z over which we can perform
standard dynamic programming techniques. We will denote such pro-
totype states as x ∈ X , cf. Figure 4.3.1. Of course, we then also need
to construct discrete transition T̂φ and reward R̂ζ functions. The next
sub-sections will outline methods to obtain these from Z , T̄φ and R̄ζ .
To find a ‘plannable’ set of states, the abstract state space should be
sufficiently covered. To construct the set, we sample L states from
the replay memory and encode them, i.e. X = {Zθ(sl)|sl ∼ D}L

l=1,
pruning duplicates.

Reward Function

In Eq. 4.8 we use a reward prediction loss to encourage the latent states
to contain information about the rewards. This helps separate distinct
states with comparable transition functions. During planning, we can
use this predicted reward R̄ζ . When the reward depends on a chang-
ing goal state, such as in the goal-conditioned tasks in Section 3.5,
R̂ζ(Zθ(s)) = 1 if Zθ(s) = Zθ(sg) and 0 otherwise. We use this reward
function in planning, i.e. R̂ζ(x) = 1 if x = Zθ(sg) and 0 otherwise.

Transition Function

We model the transitions on the basis of similarity in the abstract space.
We follow earlier work [53, 92] and assume that if two states are con-
nected by an action in the state space, they should be close after apply-
ing the latent action transition. The transition function is a distribu-
tion over next latent states. Therefore, we use a temperature softmax
to model transition probabilities between representations of abstract
states in X :

T̂′φ(zj|zi, α) =
e−d(zj ,zi+Āφ(zi ,α))/τ

∑k∈X e−d(zk ,zi+Āφ(zi ,α))/τ
(4.9)

79

Thus, for the transitions between abstract states:

T̂φ(x = j|x′ = i, â = α) = T̂′φ(zj|zi, α) (4.10)

where τ is a temperature parameter that determines how ‘soft’ the
edges are, and zj is the representation of abstract state j. Intuitively,
this means that if an action moves two states closer together, the weight
of their connection increases, and if it moves two states away from each
other, the weight of their connection decreases. For very small τ, the
transitions are deterministic.

Convergence to an MDP homomorphism

We now show that when combining optimization of our proposed loss
fuction equation 4.8 with the construction of an abstract MDP as de-
tailed in this subsection, we can approximate an MDP homomorphism.
Specifically, for deterministic MDPs, we show that when the loss func-
tion in Eq. 4.8 reaches zero, we have an MDP homomorphism ofM.

Theorem 1 In a deterministic MDPM, assuming a training set that con-
tains all state, action pairs, and an exhaustively sampled set of abstract states
X we consider a sequence of losses in a successful training run, i.e. the losses
converge to 0. In the limit of the loss L in Eq. 4.8 approaching 0, i.e. L → 0
and 0 < τ � 1, τ � ε, (σ, {αs|s ∈ S}) = (Zθ , Āφ) is an MDP homomor-
phism ofM.

Proof 4 Fix 0 < τ � 1 and write z = Zθ(s) and ā = Āφ(z, a). Consider
that learning converges, i.e. L → 0. This implies that the individual loss
terms d(T̄φ(z, ā), z′), d¬(T̄φ(z, ā), z¬) and d(R(s), R̄ζ(z)) also go to zero for
all (s, a, r, s′, s¬) ∼ D.
Positive samples: As the distance for positive samples d+ =

d(T̄φ(z, ā), z′)→ 0, then d+ � τ. Since d+ � τ, then e−d+/τ ≈ 1.
Negative samples: Because the negative distance d¬(T̄φ(z, ā), z¬) → 0,
d¬ ≤ ε. This, in turn, implies that the distance to all negative samples
d− = d(T̄φ(z, ā), z¬) ≥ ε and thus τ � ε ≤ d−, meaning that 1� d−

τ and
thus e−d−/τ ≈ 0.
This means that when the loss approaches 0, T̂′φ(z

′|z, ā) = 1 where
T(s′|s, a) = 1 and T̂′φ(z¬|z, ā) = 0 when T(s¬|s, a) = 0. Since M
is deterministic, T(s′|s, a) transitions to one state with probability 1, and
probability 0 for the others. Therefore, T̂′φ(Zθ(s′)|Zθ(s), Āφ(Zθ(s), a)) =

∑s′′∈[s′]Z T(s′′|s, a) and Eq. 4.4 holds. As the distance for rewards
d(R(s), R̄ζ(z)) → 0, we have that R̄ζ(z) = R(s) and Eq. 4.5 holds. There-
fore, when the loss reaches zero we have an MDP homomorphism ofM.

Note that Eq. 4.8 will not completely reach zero: negative samples are
drawn uniformly. Thus, a positive sample may occasionally be treated

80

as a negative sample. Refining the negative sampling can further im-
prove this approach.

Planning and Acting

After constructing the abstract MDP we plan with VI [140] and lift
the found policy to the original space by interpolating between Q-
value embeddings. Given M̂ = (X , Â, T̂φ, R̂ζ , γ), VI finds a policy
π̂ that is optimal in M̂. For a new state s∗ ∈ S , we embed it in
the representation space Z as z∗ = Zθ(s∗) and use a softmax over its
distance to each x ∈ X to interpolate between their Q-values, i.e.

Q(z∗, a) = ∑
x∈X

w(z∗, x)Q(x, a) (4.11)

w(z∗, x) =
e−d(zx ,z∗)/η

∑k∈X e−d(zk ,z∗)/η
(4.12)

where η is a temperature parameter that sets the ‘softness’ of the inter-
polation. We use the interpolated Q-values for greedy action selection
for s∗, transition to s∗∗ and iterate until the episode ends.

4.4 Experiments

Here we show that in simple domains, our approach 1) succeeds at
finding plannable MDP homomorphisms for discrete and continuous
problems 2) requires less data than model-free approaches, 3) gener-
alizes to new reward functions and data and 4) trains faster than ap-
proaches based on reconstructions. We focus on deterministic MDPs.
While preliminary results on stochastic domains were promising, an
in-depth discussion is beyond the scope of this chapter.

Baselines

To evaluate our approach, we compare to a number of baselines:

1. WM-AE: An auto-encoder approach inspired by World Models [66].
We follow their approach of training representations using a recon-
struction loss, then learning latent dynamics on fixed representa-
tions. We experimented with a VAE [91], which did not perform
well (see [94] for similar results). We thus use an auto-encoder to
learn an embedding, then train an MLP to predict the next state
from embedding and action.

2. LD-AE: An auto-encoder with latent dynamics. We train an auto-

81

encoder to reconstruct the input, and predict the next latent state.
We experimented with reconstructing the next state, but this re-
sulted in the model placing the next state embeddings in a different
location than the latent transitions.

3. DMDP-H: We evaluate the effectiveness of training without nega-
tive sampling. This is similar to DeepMDP [54]. However, unlike
DeepMDP, DMDP-H uses action-embeddings, for a fairer compari-
son.

4. GC-Model-Free: Finally, we compare to a goal-conditioned model-
free baseline (REINFORCE with state-value baseline), to contrast
our approach with directly optimizing the policy1. We include the

1 Deep reinforcement learning algo-
rithms such as our baseline may fail
catastrophically depending on the ran-
dom seed [70]. For a fair compari-
son, we train the baseline on 6 random
seeds, then remove those seeds where
the method fails to converge for the train
setting.

goal state as input for a fair comparison.

To fairly compare the planning approaches, we perform a grid search
over the softness of the transition function by evaluating performance
on the train goals in τ ∈ [1, 0.1, 0.001, 0.0001, 0.00001, 1e− 20]. Unless
otherwise stated, the planning approaches are all trained on datasets
of 1000 trajectories, sampled with a random policy. The learning rate
is set to 0.001 and we use Adam [90]. For the hinge loss, we use ε = 1.
The latent dimensionality is set to 50 everywhere. Our approach is
trained for 100 epochs. WM-AE is trained for 1000 epochs in total: 500

for the auto-encoder and 500 for the dynamics. LD-AE is trained for
1000 epochs. For constructing the abstract MDP we sample 1024 states
from D, project unto Z and prune duplicates. For planning we use VI
with discount factor γ = 0.9, 500 backups and interpolation parameter
(Eq. 4.12) η = 1e− 20. The learning rate for the model-free baseline
was chosen by fine-tuning on the training goals. For the model-free
baseline, we use a learning rate of 5e− 4 and we train for 500k steps
(more than five times the number of samples the planning approaches
use). Network Zθ has 2 convolutional layers (both 16 channels, 3× 3
filters) and 3 fully connected layers (input→ 64 → 32 → |z|). Net-
works Tφ and Rξ each have 2 fully connected layers. We use ReLU
non-linearities between layers.

Object Collection

We test our approach on an object collection task inspired by the key
task in [51], with major differences: rather than searching for three
keys in a labyrinth, the agent is placed in a room with some objects.
Its task is to collect the key. On every time step, the agent receives a
state—a 3× 48× 48 pixel image (a channel per object, including the
agent), as shown in Figure 4.4.1—and a goal state of the same size.

82

At train time, the agent receives reward of 1 on collection of the key
object, and a reward of −1 if it grabs the wrong object, and a reward
of −0.1 on every time step. The episode ends if the agent picks up
one (or more) of the objects and delivers it to one of the four corners
(randomly sampled at episode start), receiving an additional delivery
reward of 1. At test time, the agent is tasked with retrieving one of
the objects chosen at random, and delivering to a randomly chosen
location, encoded as a desired goal state. This task will evaluate how
easily the trained agent adapts to new goals/reward functions. The
agent can interact with the environment until it reaches the goal or
100 steps have passed. For both tasks, we compare to the model-free
baseline. We also compare to the DMDP-H, WD-AE and LD-AE base-
lines. We additionally perform a grid search over the hinge, number of

Figure 4.4.1: Example states in
the object collection domain for
the single object and double ob-
ject tasks.

state samples for discretization and η hyperparameters for insight in
how these influence the performance. This showed that our approach
is robust with respect to the hinge parameter, but it influences the scale
of the embeddings. The results decrease only when using 256 or fewer
state samples. Lastly, η is robust for values lower than 1. We opt for
a low value of η, to assign most weight to the Q-value of the closest
state.

Single Object Task

We first evaluate a simple task with only one object (a key). The agent’s
task is to retrieve the key, and move to one of four delivery locations in
the corners of the room. The delivery location is knowledge supplied
to the agent in the form of a goal state that places the agent in the cor-
rect corner and shows that there is no key. These goal states are also
supplied to the baseline, during training and testing. Additionally, we
perform an ablation study on the effect of the reward loss. The average
episode lengths are shown in Table 4.4.1. Our approach outperforms

83

Avg. ep. length ↓
Task Single Object Double Object
Goal Set Train Test Train Test

GC-Model-free 10.00 ± 0.11 67.25 ± 6.81 10.10 ± 0.69 38.25 ± 15.30

WM-AE 12.96 ± 8.93 10.03 ± 5.56 29.61 ± 19.42 22.53 ± 22.12

LD-AE 23.46 ± 27.10 21.04 ± 21.71 60.26 ± 29.14 52.72 ± 27.32

DMDP-H (J = 0) 82.88 ± 11.62 85.69 ± 7.98 81.24 ± 2.45 81.17 ± 2.69

Ours, J = 1, 8.61 ± 0.35 7.53 ± 0.24 8.53 ± 0.36 8.38 ± 0.07

Ours, J = 3 8.68 ± 0.27 7.63 ± 0.19 8.61 ± 0.38 8.95 ± 0.63

Ours, J = 5 8.57 ± 0.48 7.74 ± 0.22 8.26 ± 0.84 8.96 ± 1.15

Table 4.4.1: Comparing average
episode length of 100 episodes
on the object collection domain.
Reporting mean and standard
deviation over 5 random seeds
for the planning approaches.
The model free approach is av-
eraged over 4 random seeds for
the single object domain, 3 ran-
dom seeds for the double object
domain.all baselines, both at train and at test time. There is no clear prefer-

ence in terms of the number of negative samples — as long as J > 0
— the result for all values of J are quite close together. The DMDP-H
approach fails to find a reasonable policy, possibly due to the sparse
rewards in this task providing little pull against state collapse. Out of
the planning baselines, WM-AE performs best, probably because visu-
ally salient features are aligned with decision making features in this
task. Finally, the model-free approach is the best performing baseline
on the training goals, but does not generalize to test goals.

The results of the reward ablation are shown in Table 4.4.2. While

75
50
25
0
25
50
75
100

60 40 20 0 20 40 60 80
80
60
40
20
0
20
40
60
80

4

5

6

7

8

9

Value

(a) WM-AE Base-
line

201510505101520

10
5

0
5

10

8
6
4
2

0
2
4
6
8

0

1

2

3

4

5

Value

(b) LD-AE Base-
line

0.02
0.00
0.02
0.04
0.06
0.08
0.10 0.02 0.00 0.02 0.04 0.06

0.03
0.02
0.01

0.00
0.01
0.02
0.03
0.04

0

2

4

6

8

Value

(c) DMDP-H Base-
line

6
4
2
0
2
4

6
4 2 0 2 4

0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

3

4

5

6

7

8

9

Value

(d) This chapter

Figure 4.4.2: Abstract MDP for
three approaches in the single
object room domain. Nodes
are PCA projections of abstract
states, edges are predicted T̄φ,
colors are predicted values.

removing the reward loss does not influence performance much for
J = 0, J = 3 and J = 5, when J = 1 the reward prediction is needed
to separate the states. Without the reward, the single negative sample
does not provide enough pull for complete separation.

Avg. ep. length ↓
Reward Loss No Reward Loss

Goal Set Train Test Train Test

DMDP-H (J = 0) 82.88 ± 11.62 85.69 ± 7.98 87.03 ± 3.08 84.08 ± 3.02

Ours, J = 1 8.61 ± 0.35 7.53 ± 0.24 74.32 ± 19.90 68.54 ± 17.29

Ours, J = 3 8.68 ± 0.27 7.63 ± 0.19 8.54 ± 0.36 7.44 ± 0.21

Ours, J = 5 8.57 ± 0.48 7.74 ± 0.22 8.52 ± 0.19 7.53 ± 0.20

Table 4.4.2: Ablation study of
the effect of the reward loss.
Comparing average episode
length of 100 episodes for the
single object room domain.
Reporting mean and standard
deviation over 5 random seeds.

We show the latent spaces found for the baselines and our approach in
Figure 4.4.2. Our approach has found a double grid structure - repre-

84

senting the grid world before, and after picking up the key. The base-
lines are reasonably plannable after training for long enough, but the
latent spaces aren’t as nicely structured as our approach. This mirrors
results in earlier work [94]. Thus, while pixel reconstruction losses
may be able to find reasonable representations for certain problems,
these rely on arbitrarily complex transition functions. Moreover, due
to their need to train a pixel reconstruction loss they take much longer
to find useable representations. This is shown in Figure 4.4.3b, where

0 20 40 60 80 100
Training epoch

20

40

60

80

100

Av
er

ag
e

ep
iso

de
 le

ng
th

J = 0
J = 1
J = 3
J = 5

(a) Comparison of different values of J.

0 200 400 600 800 1000
Training epoch

20

40

60

80

100

Av
er

ag
e

ep
iso

de
 le

ng
th

LD-AE
WM-AE
This paper

(b) Comparison of this chapter and the
WM-AE and LD-AE baselines. WM-
AE can not be evaluated until the
auto-encoder has finished training and
training of the dynamics model begins.

Figure 4.4.3: Average episode
length per training epoch for the
single object domain. Reported
mean and standard error over 5

random seeds.

the performance after planning for each training epoch is plotted and
compared. Additionally, we observe state collapse for DMDP-H in Fig-
ure 4.4.2c, and this is reflected in a high average episode length after
planning.

Double Object Task

We now extend the task to two objects: a key and an envelope. The
agent’s task at train time is still to retrieve the key. At test time, the
agent has to pick up the key or the envelope (randomly chosen) and
deliver it to one of the corners. We show results in Table 4.4.1. Again,
our method performs well on both train and test set, having clearly
learned a useful abstract representation, that generalizes to new goals.
The WM-AE baseline again fares better than the LD-AE baseline, and
DMDP-H fails to find a plannable representation. The model-free base-
line performs slightly worse than our method on this task, even after
seeing much more data. Additionally, even though it performs rea-
sonably well on the training goals, it does not generalize to new goals
at all. The WM-AE performs worse on this task than our approach,
but generalizes much better than the model-free baseline, due to its
planning, while the LD-AE baseline does not find plannable represen-
tations of this task.

85

Continuous State Spaces

0 2 4 6 8

1.5
1.0

0.5
0.0

0.5
1.0

1.5

1

0

1

2

3

0.0

0.2

0.4

0.6

0.8

1.0

Value

(a) WM-AE Baseline

2 1 0 1 2

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

1.0

0.5

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0

V
alue

(b) LD-AE Baseline

0.020.010.000.01
0.020.03

0.005

0.000

0.005

0.010
0.015

0.005

0.000

0.005

0.010

0.015

0.2

0.4

0.6

0.8

1.0

V
alue

(c) DMDP-H Baseline

30 20 10
0 10 20

30 4010

5

0

5

10

0.5
0.0
0.5
1.0
1.5
2.0
2.5

0.0

0.2

0.4

0.6

0.8

1.0

V
alue

(d) This chapter

Figure 4.4.4: Abstract MDP for
four approaches in CartPole.
Nodes are PCA projections of
abstract states, edges are pre-
dicted T̄φ, colors are predicted
values.

We evaluate whether we can use our method to learn plannable rep-
resentations for continuous state spaces. We use OpenAI’s CartPole-
v0 environment [24]. We include again a model-free baseline that is
trained until completion as a reference for the performance of a good
policy. We also compare DMDP-H, WD-AE and LD-AE. We expect
that the latter two would perform well here; after all, the representa-
tion that they reconstruct is already quite compact. We additionally
evaluate performance when the amount of data is limited to only 100

trajectories (and we limit the number of training epochs for all plan-
ning approaches to 100 epochs). We plot the found latent space for our
approach and the baselines in Figure 4.4.4. The goal in this problem is
to reach the all-zero reward vector, which we set as the goal state with
reward 1, and all other states to reward 0. For our approach and both
auto-encoder baselines, the latent space forms a bowl with the goal in
its center. The DMDP-H again shows a shrunk latent space, and does
not have this bowl structure.

Results are shown in Table 4.4.3. Our approach performs best out of
all planning approaches. When trained fully, the model-free approach
performs better. However, when we limit the number of environmen-
tal interactions to 100 trajectories, we see that the planning approach
still finds a reasonable policy, while the model-free approach fails com-

86

Average episode length ↑ Standard Only 100 trajectories

GC-Model-free 197.85 ± 2.16 23.84 ± 0.88

WM-AE 150.61 ± 30.48 114.47 ± 17.32

LD-AE 157.10 ± 11.14 154.73 ± 50.49

DMDP-H (J = 0) 39.32 ± 9.02 72.81 ± 20.16

Ours, J = 1, 174.64 ± 22.43 127.37 ± 44.02

Ours, J = 3 166.05 ± 24.73 148.30 ± 67.27

Ours, J = 5 186.31 ± 12.28 171.53 ± 34.18

Table 4.4.3: CartPole results.
Comparing average episode
length over 100 episodes, re-
porting mean and standard
deviation over 5 random seeds.
The left column has standard
settings, in the right column
only 100 trajectories are encoun-
tered, and planning models are
trained for only 100 epochs.

pletely. This indicates that our approach is more data efficient.

Generalizing over Goals and Objects

Figure 4.4.5: Transitions in the
image manipulation task.

In many tasks we need to be able to generalize not only over goals, but
also object instances. We evaluate if our abstract state space generalizes
to unseen objects in a problem class. For this we construct an object
manipulation task. On each episode, an image of a piece of cloth-
ing is sampled from a set of training images in Fashion MNIST [196],
and a goal translation of the image is sampled from a set of train
goals (translations with negative x-offset: (−3, ·) up to and including
(−1, ·)). Thus, the underlying state space is a 7× 7 grid. The trans-
lated image is provided to the agent as a goal state. The agent receives
a reward of +1 if she moves the clothing to the correct translation. See
Figure 4.4.5.

At test time, we evaluate performance on test goals (translations with
positive x-offset: (1, ·) up to and including (3, ·), seen before as states
for training images but never as goals) and test images. The latent
spaces for each of the four representation learning approaches are
shown in Figure 4.4.6. For DMDP-H, the latent space collapses to all
but a few points. For WD-AE and LD-AE, the latent space does not
exhibit clear structure. For our approach, there is a clear square grid
structure present in the latent space. However, the underlying trans-

87

lations for the images do not neatly align across images. Clustering
such states together is interesting future work.

20
10
0
10
20
30
40

30
20
10
0
10
20
30
40

302010
01020
3040

0

2

4

6

8

V
alue

(a) WM-AE Baseline

0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5

0.4

0.2

0.0

0.2

0.4

0.30.2
0.10.0
0.10.2
0.30.4

0

2

4

6

8

V
alue

(b) LD-AE Baseline

0.00005
0.00000

0.00005
0.00010

0.00015
0.00020

0.00002
0.00001
0.00000
0.00001
0.00002
0.00003

0.000002

0.000001

0.000000

0.000001

0.000002

9.00

9.25

9.50

9.75

10.00

10.25

10.50

10.75

V
alue

(c) DMDP-H Baseline

7.5
5.0
2.5
0.0
2.5
5.0
7.5
10.0

4

2

0

2

4

6
0.30.20.1
0.00.10.2
0.30.4

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

V
alue

(d) This chapter

Figure 4.4.6: Abstract MDP for
four approaches in planning in
Fashion MNIST. Nodes are PCA
projections of abstract states,
edges are predicted T̄φ, colors
are predicted values.

Results are shown in Table 4.4.4. The goal-conditioned model-free
baseline has an easy time finding a good policy for the training set-
ting. It also generalizes well to unseen images. However, it has trouble
generalizing to new goal locations for both train and test images. Our
planning approach, on the other hand, loses some performance on
the training setting, but easily generalizes to both test images and test
goals. Neither WM-AE nor LD-AE find good policies in this problem.
They have a difficult time learning plannable representations because
their focus is on reconstructing individual images.

Avg. ep. length ↓
Dataset Train Test
Goal Set Train Test Train Test

GC-Model-free 4.82 ± 0.33 9.67 ± 5.01 4.75 ± 0.12 8.17 ± 2.67

WM-AE 59.95 ± 4.06 63.27 ± 3.36 64.27 ± 5.33 63.41 ± 2.04

LD-AE 56.39 ± 7.07 49.35 ± 4.05 51.45 ± 6.79 51.70 ± 3.97

DMDP-H (J = 0) 62.86 ± 3.87 66.68 ± 4.40 65.93 ± 4.98 64.86 ± 1.57

Ours, J = 1, 5.07 ± 0.87 5.27 ± 0.56 5.69 ± 0.93 5.63 ± 0.96

Ours, J = 3 5.60 ± 0.97 5.46 ± 0.97 6.44 ± 1.12 5.42 ± 0.89

Ours, J = 5 5.36 ± 0.71 5.67 ± 1.20 6.36 ± 1.21 5.34 ± 0.93

Table 4.4.4: Comparing average
episode length of 100 episodes
for planning in Fashion MNIST.
Reporting mean and standard
deviation over 5 random seeds.

88

4.5 Related Work

This chapter proposes a method for learning action equivariant map-
pings of MDPs, and using these mappings for constructing plannable
abstract MDPs. We learn action equivariant maps by minimizing MDP
homomorphism metrics [165]. As a result, when the loss reaches zero
the learned mapping is an MDP homomorphism [143]. MDP homo-
morphism metrics are a generalization of bisimulation metrics [46,
113]. Other works [71, 34, 193] consider equivariance to symmetry
group actions in learning. Here, we use a more general version of
equivariance under MDP actions for learning representations of MDPs.
We learn representations of MDPs by 1) predicting the next latent state,
2) predicting the reward and 3) using negative sampling to prevent
state collapse. Much recent work has considered self-supervised rep-
resentation learning for MDPs. Certain works focus on predicting the
next state using a contrastive loss [94, 6, 135], disregarding the re-
ward function. However, certain states may be erronously grouped
together without a reward function to distinguish them. [54] include
both rewards and transitions to propose an objective based on stochas-
tic bisimulation metrics [57, 46, 113]. However, at training time they
focus on deterministically predicting the next latent state. Their pro-
posed objective does not account for the possibility of latent space col-
lapse, and for complex tasks they require a pixel reconstruction term.
This phenomenon is also observed by [51], who prevent it with two
entropy maximization losses.
Many approaches to representation learning in MDPs depend (par-
tially) on learning to reconstruct the input state [36, 182, 66, 76, 67,
168, 104, 202, 85, 183, 178, 8]. A disadvantage of reconstruction losses
is training a decoder, which is time consuming and usually not re-
quired for decision making tasks. Additionally, such losses emphasize
visually salient features over features relevant to decision making.
Other approaches that side-step the pixel reconstruction loss include
predicting which action caused the transition between two states [3],
predicting the number of time steps between two states [9] or predict-
ing objects in an MDP state using supervised learning [200].
[82] identify a set of priors about the world and uses them to formulate
self-supervised objectives. In [55], the similarity between two states is
the difference in goal-conditioned policies needed to reach them from
another state. [152] learn representations for tree-based search that
must predict among others a policy and value function, and are thus
not policy-independent. Earlier work on decoupling representation
learning and planning exists [36, 182, 200]. However, these works use
objectives that include a pixel reconstruction term [36, 182] or require

89

labeling of objects in states for use in supervised learning [200].
Other work on planning algorithms in deep learning either assumes
knowledge of the state graph [164, 130, 112, 86], builds a graph out of
observed transitions [96] or structures the neural network architecture
as a planner [132, 45, 51], which limits the search depth.

4.6 Relation to Group Equivariance

Action-equivariance is a generalization of the older notion of group
equivariance [34]. In group equivariance, we require that for a function
Z : X → Z , and a group G acting on a space X , the following holds:

Z(g · x) = ḡ · Z(x) ∀g ∈ G, x ∈ X (4.13)

where ḡ indicates an equivalent group element acting on Z . If we view
the original point x ∈ X as a state, and the transformed point x′ = gx
as a next state, we can define g as a special case of an MDP action and
write:

Z(T(x, g)) = T̄(Z(x), ḡ) ∀g ∈ G, x ∈ X (4.14)

which we immediately recognize as the equation in Figure 4.1.1. We
can further generalize this by letting T(·, ·) and T̄(·, ·) be stochastic
functions, and matching their distributions. This generalization sug-
gests that the notion of a group action and an MDP action are more
similar than they at first glance look. Additionally, we can view equiv-
ariance in the general case as a body of work that finds or defines
homomorphisms between spaces that respect some notion of acting
on a point (a state, or e.g. an image) in order to bring it to another
point (a next state, or a rotated image).

4.7 Conclusion

This chapter proposes the use of ‘equivariance under actions’ for learn-
ing representations in deterministic MDPs. Action equivariance is en-
forced by the use of MDP homomorphism metrics in defining a loss
function. We also propose a method of constructing plannable abstract
MDPs from continuous latent spaces. We prove that for determinis-
tic MDPs, when our objective function is zero and our method for
constructing abstract MDP is used, the map we learn is an MDP ho-
momorphism. Additionally, we show empirically that our approach
is data-efficient and fast to train, and generalizes well to new goal

90

states and instances with the same environmental dynamics. Finally,
we show that action-equivariance is a generalization of group equivari-
ance. Potential future work includes an extension to stochastic MDPs
and clustering states on the basis of MDP metrics. Using a clustering
approach as part of model training, we can learn the prototypical states
rather than sampling them. This comes at the cost of having to back-
propagate through a discretization step, which in early experiments
(using Gumbel-Softmax [78]) led to instability.

91

5
Learning Factored
Representations of Markov
Decision Processes

5.1 Introduction

In the previous Chapter we presented work that learns to recover the
structure in an environment by using action-equivariance. In this Chap-
ter, we will learn the structure in individual states in order to improve
decision making in object-oriented decision making problems.

Many decision-making problems are inherently structured: manip-
ulating objects in a scene, steering agents in a multi-agent system,
placing chip blocks on a chip and attaching atoms in molecule de-
sign are all examples of problems where the full problem state is
decomposed into different factors, which are sometimes independent
of each other. By making use of this structure, we can often reduce
solving an exponentially complex problem to solving a series of sim-
pler problems. For example, if we have a structured representation
of states in a reinforcement learning problem, we can use factored
approaches to decision making [65, 63, 154, 88] or use similarly struc-
tured graph neural network architectures in deep reinforcement learn-
ing [102, 180, 75, 132, 130, 37]. In Chapter 3 we have assumed to
know the factorization of the environment. In this Chapter, we in-

92

vestigate the case where this assumption is loosened: we consider
a set of decision making problems with unknown structure. This
is an important research question, as structure is not always easily
given a priori. Oftentimes, observations of the world are unstructured
streams of e.g. image data, and structure in the state of the world
must be inferred by the agent itself. As such, there is a large body
of work on learning structured representations of scenes, resulting in
object-based representations [28, 11, 184, 174, 92, 161, 162, 197, 200].
Most works in this area require some form of human supervision,
but several works consider the fully self-supervised or unsupervised
setting [59, 128, 174, 79, 197, 25, 58, 44]. Such self-supervised meth-
ods are usually based on reconstructing the visual inputs from the
learned representations. There are a few issues with such approaches:
reconstruction-based methods need to be able to properly reconstruct
visually important yet potentially irrelevant features such as back-
grounds. This means a lot of training time and model capacity is
wasted on learning to accurately represent those features. Addition-
ally, one needs to spend training time and compute to learn a decoder
model which is not needed for the downstream task. Finally, such ap-
proaches tend to ignore visual features that are small but potentially
important to decision-making, such as a small ball in certain Atari
games. We therefore propose using a contrastive learning method
based on graph embedding approaches [19, 181], where states that
transition into each other are placed close together in latent space, and
random state pairs are pushed further from each other.

We introduce a method for learning factored representations of object-
oriented MDPs, where each state consists of a set of latent state vari-
ables, one per object in a scene. We model the latent transition model
as a graph neural network [149, 114, 95, 56, 12], with the nodes the la-
tent state variables. Due to the graph network transition model, we au-
tomatically obtain permutation equivariance on the object transitions.
We call this method Contrastively-trained Structured World Models
(C-SWMs). We also introduce a factored contrastive loss based on
learning translational graph embeddings [19, 181], and connect con-
trastive learning for state representations to relational graph embed-
dings [129]. Finally, we introduce a novel ranking-based evaluation
strategy which we use to demonstrate that C-SWMs learn object-level
state representations, combinatorially generalize to unseen states and
can identify objects from scenes without supervision in object manip-
ulation, 3D physics, and Atari settings.

93

5.2 Background

A Markov Decision Process (MDP) is a tuple M = (S, A, R, T, γ) with
S the set of states, A the set of actions, R : S × A → R the reward
function, T : S× A× S → [0, 1] the transition function and γ ∈ [0, 1] a
discount factor. An agent acts in an MDP with a policy π : S× A →
[0, 1]. In this Chapter, we will not consider the reward function, which
we will leave out going forward.

A factored MDP is an MDP whose state is a multivariate random vari-
able X = (X1, · · · , Xn) and state instances are x = (x1, · · · , xn) with
for every i, xi ∈ Dom(Xi). In a factored MDP, the transition function
P(x′|x, a) can be written as a set of Dynamic Bayesian Networks (one
per action) [22, 88, 154, 63]. We can write the transition function using
xi’s parent set, xa,i.

P(x′|x, a) = ∏
i

P(x′i |xa,i) (5.1)

We base our method on the graph embedding method TransE [19].
Consider a knowledge base K of entity-relation-entity triples K =

{(et, rt, ot)}T
t=1, with et ∈ E the subject, rt ∈ R the relation (not to

be confused with the reward in an MDP) and ot ∈ E the object of the
knowledge base fact. We can draw a parallel between such fact triples
and state transitions (st, at, st+1) in an MDP without rewards. In a
sense, the MDP’s action can be viewed as the relation between a state
st and next state st+1.

TransE embeds knowledge facts with maps F : E → RD and G : R →
RD and computes the energy of a triple as H = d(F(et) + G(rt), F(ot))

with d(·, ·) the squared Euclidean distance and F (and G) are embed-
ding functions that map discrete entities (and relations) to RD, where
D is the dimensionality of the embedding space. During training, an
energy-based hinge loss [110] is used.

5.3 Structured World Models

We wish to learn structured abstract representations of MDP states
and permutation equivariant transition functions which are consistent
with the factored nature of the problem.

94

Learning Abstract Representations

Assume we have a dataset of experience B = {(st, at, st+1)}T
t=1 sam-

pled from for example an exploration policy π, with T the number of
tuples in the data set. We wish to train an encoder E : S→ Z that maps
states st ∈ S to abstract representations zt ∈ Z = Z1× . . .×ZK, with K
the number of object slots. We set Zk = RD for each k, with D a hyper-
parameter. The abstract representations zt should contain only infor-
mation needed for modeling the transitions in the environment, and
no superfluous information (such as for example background color in
a video game). Note that while in this Chapter we do not consider the
reward, we can include reward in learning representations, as we did
in Chapter 4.

Since we wish to find a structured representation of the state, we re-
quire that our encoder maps from unstructured (usually image-based)
inputs to a factored, object-oriented representation. Our encoder thus
consists of two modules: an object extractor Eext that maps from ob-
servations to K feature maps, and an object encoder Eenc that maps
from feature maps to object representations. The feature maps mk

t =

[Eext(st)]k are flattened and used to predict abstract representations
zk

t = Eenc(mk
t) with zk

t ∈ Zk. The feature maps can be viewed as object
masks corresponding to an object slot. The object encoder Eenc shares
weights between objects.

In this chapter we will assume a factored action space A = A1 × . . .×
AK, which provides an independent action for each object in the scene.
This is a strong inductive bias for learning factored representations.
The full architecture is shown in Figure 5.3.1.

Contrastive Learning

We can use contrastive coding on the transitions in an MDP without
rewards: (st, at, st+1). However, the same action can have different
outcomes in different states. We therefore base the "relation effect" on
both the state and the action, resulting in the latent transition model
T(zt, at). In essence, we therefore constrain the latent transition func-
tion to model the effects of actions as translations in latent space. The
energy is then H = d(zt + T(zt, at), zt+1).

For a single (st, at, st+1) with a negative sample z̃t = E(s̃t), and s̃t

randomly sampled from the dataset, the energy-based hinge loss is

L = d(zt + T(zt, at), zt+1) + max(0, ε− d(z̃t, zt+1)) , (5.2)

where ε is the margin for which ε = 1 was used in our experiments.

95

The full loss is an expectation of Eq. 5.2 over samples from the dataset.

CNN

Object
extractor

MLP

Object
encoder

GNN

Transition
model

Contrastive
loss

st mt zt zt + Δzt zt+1

Figure 5.3.1: Visualization of
general C-SWM architecture: a
CNN object extractor, MLP ob-
ject encoder and GNN transi-
tion model that uses the actions
to compute ∆zt, together with
an object-factorized contrastive
loss.

5.4 Transition Model

We model the transition function as a graph neural network (GNN) [149,
114, 95, 11, 56, 12]. When using a GNN, the nodes are the different ob-
jects in the scene and the model is able to learn different pairwise
interactions based on the object features, while being equivariant to
the order in which the objects are assigned to slots. The input for the
GNN are a set of nodes, and a set of edges. In this chapter we model
the graph as a fully connected graph, so that long range dependencies
do not require multiple message passing steps. The node inputs are
the object representations {zt

k}
K
k=1 extracted by the encoder and the ac-

tions at = (a1
t , · · · , aK

t). The actions are encoded as one-hot vectors for
discrete action spaces, but can be replaced by zero vectors in case of
no actions or continuous vectors in case of continuous action spaces.
The transition GNN T(·, ·) predicts the effect of taking at from zt:

∆zt = T(zt, at) = GNN({(zk
t , ak

t)}K
k=1) . (5.3)

where ∆zt = (∆z1
t , · · · , ∆zK

t). The predicted next latent state is then
given by

zt+1 = (z1
t + ∆z1

t , · · · , zK
t + ∆zK

t) . (5.4)

Thus, the transition function can also be viewed as predicting the in-
dividual translational effects of the action on each object in the state.

Message Passing The GNN consists of MLP node update functions
fnode and MLP edge update functions fedge which share parameters
between nodes and edges. A message passing round is given by

e(i,j)t = fedge([zi
t, zj

t]) (5.5)

∆zj
t = fnode([z

j
t, aj

t, ∑i 6=j e(i,j)t]) , (5.6)

where e(i,j)t is a predicted edge representation between nodes i and j.
Multiple rounds of message passing are possible, but were not found
to be necessary, possibly due to the use of a fully connected graph.

96

Message passing in a fully connected graph is O(K2), but this may
be reduced to linear complexity if messages are only sent to nearest
neighbors in latent space. We leave this for future work.

Factored Contrastive Loss We now adapt the original contrastive loss
function in Eq. 5.2 to a factored loss, which is computed independently
for the different objects. Write the predicted effect of the action on the
k-th object as ∆zk

t = Tk(zt, at). Then, the energy H for positive samples
is

H =
1
K

K

∑
k=1

d(zk
t + Tk(zt, at), zk

t+1) , (5.7)

and the energy H̃ for negative samples is

H̃ =
1
K

K

∑
k=1

d(z̃k
t , zk

t+1) . (5.8)

Here, z̃t = E(s̃t) is the representation of the negative sample, and z̃k
t

the representation of the k-th object. The full contrastive loss for a
single sample is then given by

L = H + max(0, ε− H̃) . (5.9)

5.5 Related Work

Here we review related work on state representation learning.

State Representation Learning State representation learning is a very
active field. The general goal is to find representations of states where
similar states are close together in latent space. Stochastic bisimula-
tion [38, 57], lax bisimulation [165] or MDP homomorphisms [141, 142]
are formalisms on which much of the work on state similarity is built1.

1 For an overview, see [113].For example, there is much work on bisimulation and other similarity
metrics [46, 26, 106, 49, 47, 48, 27] and on using bisimulation (or MDP
homomorphism) metrics to learn or evaluate representations [201, 170,
54, 89, 4, 20]. It is also very common to use reconstruction-based
losses [36, 182, 66, 67, 108, 54, 76, 168, 104, 202, 85, 183, 178, 8]. Other
self-supervised learning approaches are also common [167, 51, 82, 43,
3, 9, 55, 152].

Contrastive Learning Contrastive approaches are common in learn-
ing graph representations [19, 139, 61, 19, 150, 176], word represen-
tations [123, 121], and image representations [135, 41, 72, 29]. They are

97

also becoming more common in state representation learning [94, 170,
158, 2, 116, 6, 135]. Most of these works on state representation do not
focus on recovering the structure in individual states.

Structured Models of Environments Graph networks have been used to
take advantage of the structure in an environment [160, 11, 73, 180, 92,
146]. Such approaches usually assume that the structured nature of the
environment is already known. For problems where this structure is
unknown, there is a body of literature (see [60] for a review) focusing
on recovering objects from scenes directly from pixels [59, 128, 174,
79, 197, 25, 58, 44], using pixel-based losses. Recently, other forms
of structure have been gaining ground as well, for example by taking
symmetries into account while learning representations [126, 136, 189,
155].

5.6 Experiments

We evaluated C-SWMs on different environments to see if they can
recover objects, predict transitions accurately, and generalize to new
combinations of objects in scenes. Code can be found at https://

github.com/tkipf/c-swm.

Evaluation and Training

We evaluate using rankings and compare to baselines. Settings, base-
lines, and evaluation metrics are described below. For more details
and experiments, see [94].

Evaluation Metrics Different models result in different latent spaces.
To compare their trajectory predictions in latent space, we compare
the different approaches based on ranking. This is done by encoding
the starting observation into latent space, followed by a prediction of
the next step(s). Then the target observation is encoded, as well as a
set of reference observations. The latent states are ranked based on
how close they are to the predicted latent target state. This allows
us to compare methods which learn very different latent spaces and
removes the need for comparing based on reconstruction error or to
do downstream planning (for planning performance of a related ap-
proach, see Chapter 4). We compare on Hits at Rank 1 (H@1) and
Mean Reciprocal Rank (MRR) (in %) after encoding the original state,
taking steps in latent space, and comparing to the encoding of the tar-
get state. We report mean and standard error on 4 runs of hold-out

https://github.com/tkipf/c-swm
https://github.com/tkipf/c-swm

98

environment instances.

Training and Evaluation We sample a training dataset by taking uni-
formly random actions in the environment and storing the interac-
tions. We similarly sample a separate evaluation data set for each
environment. We use Adam [90] with a learning rate of 5 · 10−4 and
a batch size of 1024. Details of architectures and hyperparameters are
included in the sections below and in [94].

Baselines For baselines we compare to auto-encoder based world mod-
els [66] (both AE and VAE [91]). For the 3-body physics environment
we additionally compare to Physics as Inverse Graphics (PAIG) [80].
Additionally, for 3D shapes we perform an ablation study where we
compare the effect of removing the latent GNN, the state factorization,
or the contrastive loss. For AE and VAE baselines we use a batch size
of 512 (due to higher memory demands) and for PAIG we use a batch
size of 100, as recommended by the authors.

(a) 3D blocks (b) Space Invaders (c) 3 Body Physics

Figure 5.6.1: Example observa-
tions from a) 3D shapes block
pushing world, b) Atari Space
Invaders, and c) 3 Body Physics.

3D Shapes

We evaluate on a novel 3D shapes environment, where each block is
moved by its own action. The shapes move in a 2D grid, but are
represented in the image as blocks in 3D, making it more difficult to
extract the underlying objects from visual information. The observa-
tions are 50× 50× 3 color images. Additional details in [94]. Exam-
ple observations are shown in Figure 5.6.1a. We sample 1000 training
episodes with 100 environment steps. We sample 10,000 evaluation
episodes with 10 steps each. Since the number of possible states is
large (approximately 6.4M unique states), a complete trajectory over-
lap between test and train data is unlikely. We train for 100 epochs.

Qualitative Results We visualize discovered object masks on held-out
test data in Figure 5.6.2a, which shows that the objects are masked out
separately. In Figure 5.6.2b we show the learned abstract transition
graph for one of the blocks. These results show a that the model is
able to recover the underlying grid structure of a given object’s transi-
tion graph. Note that no transitions are predicted where the block is

99

obstructed by another, even though the transition model does not have
access to the image inputs.

(a) Discovered object masks in a scene
from the 3D Cubes environment.

(b) Learned abstract state transition
graph of the yellow cube, others fixed.

Figure 5.6.2: Discovered object
masks (left) and abstract state
transition graphs for a single
object (right) in the 3D shapes
block pushing task. Each node
is an encoded state from a held
out test set, and each edge (color
coded by action type) is a transi-
tion predicted by the model.

Quantitative Results See Table 5.6.1 for quantitative results. C-SWMs
predict almost perfectly for short term (1 step), mid-term (5 steps), and
long term (10 steps) predictions, in terms of both H@1 and MRR. In
comparison, both the auto-encoder world model and the VAE world
model do quite well in the short term, but perform a lot worse on
mid-term and long term prediction. In terms of ablations of C-SWMs,
removing the latent GNN (replacing it by an object based MLP that
ignores interactions) slightly hurts long term prediction. Removing the
factored latent space hurts all predictions, and long term predictions
most. Removing the contrastive loss hurts all predictions, resulting in
a very low score for long term prediction especially.

Space Invaders

We also evaluate on Space Invaders, an Atari 2600 game which has
a lot of moving parts: a gun (the agent), the shields, and the aliens.
The observations are two consecutive frames, given as 50× 50× 6 ten-
sors. Example observations are shown in Figure 5.6.1b. We sample
1000 training episodes with 10 steps each. We sample 100 evaluation
episodes with 10 environment steps. To minimize train/test overlap,
we warm-start the data set by first taking random actions for 50 inter-
actions, discard them, and then start filling the data set. We addition-
ally take care that no trajectories from the test and train set overlap
completely. We train for 200 epochs.

Qualitative Results See Figure 5.6.3 for object-specific filters and a
state transition graph for Space Invaders. The transition graphs are
much harder to interpret than those for the 3D shapes grid world.
This can have multiple reasons. For one, actions are less indepen-
dent compared to the grid worlds. For example, shooting the bullet

100

now influences the aliens in the future. Additionally, objects cannot be
swapped out the way the objects can in the block world (i.e. the bullet
behaves differently than the aliens). Finally, there are many objects
with identical visual features (the aliens).

(a) Object-specific filters.

2 0 2

0.05

0.00

0.05

0.10

(b) Object slot 1.

2.5 0.0 2.5

0.0

0.5

1.0

(c) Object slot 2.

5 0 5

2

0

2

(d) Object slot 3.

Figure 5.6.3: Object filters (top)
and abstract state transition
graphs per object slot (bottom)
in Space Invaders. Each node
is an encoded state from an un-
seen test instance of the environ-
ment. Predictions from a trained
C-SWM model with K = 3 ob-
ject slots.

Quantitative Results See Table 5.6.1 for quantitative results. The pre-
diction is not as good as it was in the block world, possibly for similar
reasons as those listed above. Additionally, results can have a higher
variance. Compared to the AE and VAE baselines, C-SWMs perform
better at short, mid and long term prediction than the baselines, as-
suming we use the right number of slots (performance drops for K = 1
and is best for K = 5).

(a) Observations from 3-body gravitational
physics simulation (top) and learned filter
for one object (bottom).

2.5 0.0 2.5

1

0

1

2

(b) Abstract state transition
graph.

Figure 5.6.4: Object-specific fil-
ter (left) and embedded trajec-
tories (right) in 3-body physics.
Embeddings are projected from
four to two dimensions with
PCA. Orange nodes are starting
states, green edges are ground
truth transitions, purple edges
are predicted transitions.

3-Body Physics

Finally, we evaluate on 3-body physics, where the transitions of a sys-
tem of 3 objects have to be predicted. Notably, this environment does
not contain any actions. The observations are two consecutive frames,
given as 50× 50× 6 tensors. Example observations are shown in Fig-
ure 5.6.1c. We sample 5000 training episodes with 10 steps. We sample

101

1000 evaluation episodes with 10 steps. Since this environment has a
continuous state space, a full trajectory overlap between test and train
set is unlikely. We train for 100 epochs.

Qualitative Results We show learned filters for one of the objects, and
an abstract state graph for multiple trajectories in Figure 5.6.4. The
learned filters are able to separately encode each of the objects. In
the abstract state transition graph, we see that the model is able to
encode the relevant information about the object and predict smooth
trajectories, with the exception of one of the trajectories (in the center),
which deviates.

Quantitative Results See Table 5.6.1. Both C-SWMs and the AE and
VAE baselines are good at short and mid term prediction. C-SWM, as
well as the autoencoder baseline are also good at longer term predic-
tion. The PAIG model does not perform as well2.

2 Using the hyperparameter settings rec-
ommended by the authors.

Summary C-SWMs predict almost perfectly in the block pushing task,
and are able to recover the grid structure of the transition function
almost perfectly. The ablation study shows that all components of
C-SWMs, but particularly the contrastive loss, contribute to a greater
predictive performance, both for short and long term prediction. The
object factorization is an important component as well, with the in-
teraction (GNN) component providing a small final boost. For Space
Invaders, C-SWMs and baseline models have a harder time represent-
ing the states well. While C-SWMs perform better than the baselines,
the performance is not as good as in the 3D shapes environment. Ad-
ditionally, the number of slots (a hyperparameter) has a non-trivial in-
fluence on the performance of the model, and should be chosen with
care. In the Physics environment, C-SWMs and the strongest baseline
(AE world model) perform well, with C-SWMs being slightly better at
long term prediction.

5.7 Conclusions

We proposed C-SWMs, a method for learning structured representa-
tions of states in object-oriented MDPs that uses contrastive coding
and learns a graph neural network transition model. C-SWMs make
use of the learned structure, improving on multi-step prediction and
providing better generalization to unseen environment configurations
than models that use decoders, unstructured transitions, or unstruc-
tured representations.

102

1 Step 5 Steps 10 Steps

Model H@1 MRR H@1 MRR H@1 MRR
3

D
BL

O
C

K
S

C-SWM 99.9±0.0 100±0.0 99.9±0.0 100±0.0 99.9±0.0 99.9±0.0

– latent GNN 99.9±0.0 99.9±0.0 96.3±0.4 97.7±0.3 86.0±1.8 90.2±1.5

– factored states 74.2±9.3 82.5±8.3 48.7±12.9 62.6±13.0 65.8±14.0 49.6±11.0

– contrastive loss 48.9±16.8 52.5±17.8 12.2±5.8 16.3±7.1 3.1±1.9 5.3±2.8

World Model (AE) 93.5±0.8 95.6±0.6 26.7±0.7 35.6±0.8 4.0±0.2 7.6±0.3

World Model (VAE) 90.9±0.7 94.2±0.6 31.3±2.3 41.8±2.3 7.2±0.9 12.9±1.3

SP
A

C
E

IN
VA

D
ER

S C-SWM (K = 5) 48.5±7.0 66.1±6.6 16.8±2.7 35.7±3.7 11.8±3.0 26.0±4.1

C-SWM (K = 3) 46.2±13.0 62.3±11.5 10.8±3.7 28.5±5.8 6.0±0.4 20.9±0.9

C-SWM (K = 1) 31.5±13.1 48.6±11.8 10.0±2.3 23.9±3.6 6.0±1.7 19.8±3.3

World Model (AE) 40.2±3.6 59.6±3.5 5.2±1.1 14.1±2.0 3.8±0.8 10.4±1.3

World Model (VAE) 1.0±0.0 5.3±0.1 0.8±0.2 5.2±0.0 1.0±0.0 5.2±0.0

3
-B

O
D

Y
PH

Y
SI

C
S C-SWM 100±0.0 100±0.0 97.2±0.9 98.5±0.5 75.5±4.7 85.2±3.1

World Model (AE) 100±0.0 100±0.0 97.7±0.3 98.8±0.2 67.9±2.4 78.4±1.8

World Model (VAE) 100±0.0 100±0.0 83.1±2.5 90.3±1.6 23.6±4.2 37.5±4.8

Physics WM (PAIG) 89.2±3.5 90.7±3.4 57.7±12.0 63.1±11.1 25.1±13.0 33.1±13.4

Table 5.6.1: Ranking results for
multi-step prediction in latent
space. Reported mean and
standard error of scores over 4

runs on hold-out environment
instances. Highest (mean) scores
in bold.

Scope Our approach focuses on learning representations for deter-
ministic environments under the Markov assumption. We consider an
extension to stochastic transition functions and partially observable en-
vironments a useful avenue for future work. Additionally, C-SWMs in
their current form do not model the reward function, nor do they take
reward into account when learning representations. This results in
representations that may not contain all necessary information about
a given state. Another limitation is that we do not evaluate the repre-
sentations on downstream decision making tasks: their usefulness is
only evaluated in terms of predictive power. In Chapter 4 we looked at
unstructured representations learned in a similar way and show that
they are also plannable. Finally, C-SWMs are not able to tell different
instances of visually identical objects in a scene apart. For instance
disambiguation in a task such as Space Invaders, an approach based
on assigning objects into slots [83, 84, 145, 58, 44, 25, 93] could be a
useful future avenue.

103

6
Conclusion

This thesis studied symmetry and structure in deep reinforcement
learning. In particular, we focused on the main research question:
How can we incorporate and extract symmetry and structure in reinforce-
ment learning?

We divided the thesis up into two main parts, symmetry and struc-
ture. Part 1 considered symmetries in the state-action space of deci-
sion making problems. We considered symmetries in single agent and
multi-agent reinforcement learning problems. In Part 2, we discussed
structure in environments and states. We proposed learning action-
equivariant representations of MDPs, and recovering object-oriented
structure from environment interactions.

We start from the first research question, How can we leverage knowl-
edge of symmetries in deep reinforcement learning? To answer this ques-
tion, Chapter 2 introduces MDP Homomorphic networks for deep re-
inforcement learning. MDP Homomorphic networks are neural net-
works that are equivariant under symmetries in the joint state-action
space of an MDP. We make explicit the connection between MDP Ho-
momorphisms and equivariant networks. Current approaches to deep
reinforcement learning do not usually exploit knowledge about such
structure. By building this prior knowledge into policy and value
networks using an equivariance constraint, we can reduce the size of
the solution space. We specifically focus on group-structured symme-
tries (invertible transformations). Additionally, we introduce an easy
method for constructing equivariant network layers numerically, so

104

the system designer need not solve the constraints by hand, as is typ-
ically done. We construct MDP homomorphic MLPs and CNNs that
are equivariant under either a group of reflections or rotations. We
show that such networks converge faster than unstructured baselines
on CartPole, a grid world and Pong.

After showing the improvement in data efficiency using symmetry
constraints in single agent policies, we next investigate the effect of
global symmetry constraints in distributed cooperative multi agent
systems. The second research question, How can we leverage knowledge
of global symmetries in distributed cooperative multi-agent systems?, can
now be discussed. Chapter 3 introduces Multi-Agent MDP Homomor-
phic Networks, a class of networks that allows distributed execution
using only local information, yet is able to share experience between
global symmetries in the joint state-action space of cooperative multi-
agent systems. In cooperative multi-agent systems, complex symme-
tries arise between different configurations of the agents and their local
observations. For example, consider a group of agents navigating: ro-
tating the state globally results in a permutation of the optimal joint
policy. Existing work on symmetries in single agent reinforcement
learning can only be generalized to the fully centralized setting, be-
cause such approaches rely on the global symmetry in the full state-
action spaces, and these can result in correspondences across agents.
To encode such symmetries while still allowing distributed execution
we propose a factorization that decomposes global symmetries into
local transformations. Our proposed factorization allows for distribut-
ing the computation that enforces global symmetries over local agents
and local interactions. We introduce a multi-agent equivariant policy
network based on this factorization. We show empirically on symmet-
ric multi-agent problems that globally symmetric distributable policies
improve data efficiency compared to non-equivariant baselines.

In Part 2, we considered structure in learning representations of en-
vironments and states. We considered learning plannable represen-
tations that are equivariant to actions taken in the original problem
using contrastive learning. We dicuss the third research question, How
can we learn representations of the world that capture the structure of the
environment? In Chapter 4, we exploit action equivariance for repre-
sentation learning in reinforcement learning. Equivariance under ac-
tions states that transitions in the input space are mirrored by equiva-
lent transitions in latent space, while the map and transition functions
should also commute. We introduce a contrastive loss function that
enforces action equivariance on the learned representations. We prove
that when our loss is zero, we have a homomorphism of a determinis-

105

tic Markov Decision Process (MDP). Learning equivariant maps leads
to structured latent spaces, allowing us to build a model on which we
plan through value iteration. We show experimentally that for deter-
ministic MDPs, the optimal policy in the abstract MDP can be success-
fully lifted to the original MDP. Moreover, the approach easily adapts
to changes in the goal states. Empirically, we show that in such MDPs,
we obtain better representations in fewer epochs compared to repre-
sentation learning approaches using reconstructions, while generaliz-
ing better to new goals than model-free approaches. Additionally, we
show that action-equivariance is a generalization of the older notion
of group equivariance, which suggests that work on equivariance can
be viewed from the perspective of homomorphisms that act to move
from one state (point in a space) to another state (point in a space).

Thus, learned representations that are action-equivariant are plannable
with exact planning methods. We next consider the problem of ex-
tracting structure within a state, in the form of object-oriented repre-
sentation learning. We can now discuss the final research question:
How can we learn representations of the world that capture the structure in
individual states? Learning structured representations of the world is
an important step towards better generalization in downstream tasks.
Chapter 5 discusses Contrastively-trained Structured World Models
(C-SWMs), an approach to representation learning that uses a con-
trastive method to learn compositional representations of world states.
We show that C-SWMs can recover structured representations from
unstructured image inputs, and can generalize to new scenes better
than reconstruction-based baselines and ablated versions.

General Conclusions

The focus of this thesis was to leverage symmetry and structure in
deep reinforcement learning problems. We considered two views on
this problem: incorporating prior information in the form of sym-
metries, and finding representations that capture the structure in the
world. We have shown that using symmetries in single and multi
agent systems can leverage outside knowledge to reduce the amount
of environment interactions necessary to finding solutions. We have
also shown that it is possible to recover plannable representations by
focusing on learning action-equivariant representations, and that in
object-oriented problems with factored action spaces, we are able to
recover the object structure, and use this to better predict future states.

106

Limitations

The work presented in this thesis is only the first step in this research
area. Many open challenges remain. In certain problems, we might
not be able to identify the symmetries a priori. In general, comput-
ing symmetries in MDPs is isomorphism complete (complexity class
of testing whether two graphs are isomorphic) when the dynamics of
the system are known [127]. Developing methods for learning these
symmetries from data is a promising emerging research area [189]. It
is important to correctly identify symmetries, as the approaches pre-
sented here are not suitable for asymmetric problems. For example,
consider a cartpole problem where the right side of the tracks has more
friction than the left side of the tracks. In such a case, the dynamics
of the problem are not symmetric, even if they appear that way to a
system designer. Another example is playing a game with symmetric
dynamics with an asymmetric opponent. In football one might expect
a symmetry to exist between the top and the bottom half of the field.
However, if the opposing team has a bias to playing through the top
half, the resulting dynamics are asymmetric. For problems that are not
symmetric, using a symmetric equivariant policy network such as the
methods presented here is suboptimal; we force the agent to use sym-
metric policies only. If the optimal policy is asymmetric, this means
we exclude the optimal policy from the set of possible policies.

Enforcing symmetries in neural networks tends to introduce additional
computational overhead. In practice, we need to balance computa-
tional speed with sample efficiency. Problems with a high cost per
sample will benefit from using equivariance, whereas in problems with
cheap samples and a necessity for fast decision making it might be
preferable to use faster neural network architecturess combined with
large numbers of samples.

In partially observable problems, symmetries can depend on the whole
history of a trajectory [74]. This means that any network that uses such
information needs to propagate geometry information through pro-
cessing the whole trajectory. In practice, this means developing meth-
ods that propagate equivariant information through recurrent networks.

Throughout this work, we have focused on exact symmetries. In many
problems, the symmetries may only be approximate. For example, in
continuously rotating a robot arm we may wish to treat rotations of
−90◦ and 90.5◦ as symmetric. Some notion of ε-symmetry may be
useful in problems like these. Additionally, some symmetries may be
partial: opening the door on the left is symmetric to opening the door

107

on the right, except the door on the right has a different color handle.
Dealing with situations like these will require us to find state-action
representations that abstract away irrelevant differences, for example
through learning MDP homomorphisms (see Chapter 4).

For planning in learned representations, there are limits to using dy-
namic programming, as we cannot always consider the full state space
before acting. Additionally, as the world is dynamic, there is value in
developing methods that are dynamic as well, changing representa-
tions on the fly as the agent encounters changes in the environmental
dynamics. Finally, our representation learning methods have focused
primarily on deterministic and Markov problems. Generalizing these
methods to stochastic and partially observable problems is an impor-
tant step to later applications.

109

7
Acknowledgments

I’d like to take this section to thank everyone who so generously gave
to me of their time, their support, or their insight. First of all, I’m
extremely grateful to my promotor, Max Welling, who beyond his bril-
liant intellect is a kind and creative person. Max, thank you for your
support, guidance, and the trust and freedom you gave me to pur-
sue the research that inspired me. I am furthermore deeply indebted
to my co-promotor Frans Oliehoek, who besides his sharp mind and
encyclopedic knowledge of the pre-deep learning RL literature, has
championed for me since before the PhD. Frans, I cannot express how
much your support has meant to me in finding my way as a researcher.
Further, I would like to express my deepest appreciation to my co-
promotor Herke van Hoof, whose insightful questions and conscien-
tious attitude have made my work stronger and my life easier. Herke,
thank you for being a supervisor I could always fall back on.

I’d like to extend my gratitude to the esteemed committee for my
PhD: Dr. Doina Precup, Dr. Jan Peters, Dr. Evangelos Kanoulas, Dr.
Maarten de Rijke, Dr. Erik Bekkers.

Thanks Yuge Shi and Karen Ullrich. Yuge, over the past few years you
have become one of my closest friends. It’s hard to describe what your
friendship means to me. Karen, you have been an incredible support
and cheerleader for me and I’m grateful for your wonderful friendship.

I furthermore want to extend my thanks to Rianne van den Berg and
Zeynep Akata for their time, advice, and friendship through the years.

110

I’d also like to thank Bert Bredeweg, for encouraging me to continue
my studies after undergrad, and Leo Dorst, for always being kind,
honest, and a wonderful teacher. Many thanks also to Cees Snoek,
Katja Hofmann, Jan-Willem van de Meent, Diederik Roijers, and Sam
Devlin for their time, advice, and support.

I would like to express my appreciation to my close collaborators
Daniel Worrall and Thomas Kipf. Thank you for being brilliant and a
delight to work with. Thanks as well to my other co-authors: Johannes
Brandstetter, Rob Hesselink, Ondrej Biza, Jose Gallego-Posada, Lau-
rens Weitkamp, Jakob Foerster, Darius Muglich, Christian Schroeder
de Witt, Shimon Whiteson, Tejaswi Kasarla, Gertjan Burghouts, Max
van Spengler, Rita Cucchiara, Rahul Savani, Roderich Groß.

Doing a PhD in AMLAB has been an incredible experience. A heart-
felt thanks to the many insightful, kind, creative, smart, and funny lab-
mates from AMLAB and beyond who I had the good fortune of doing a
PhD with. Thank you Sadaf, Maxi, Bas, Victor, Tim, Ivan, Sindy, Taco,
Jakub, Marco, Qi, Maartje, Gabriele, Maurice, Artem, Emiel, Tessa,
Matthias, Christos, Wendy, Sara, Sharvaree, Putri. Thank you as well
to Felice and Virginie for taking many tasks out of our hands, and to
Dennis for solving all of our computer problems.

Many thanks to the good people at DeepMind, who put a lot of effort
into turning a remote internship into a wonderful experience. Thanks
to my supervisors Ian Gemp, Richard Everett, and Yoram Bachrach.
Many thanks also to Danielle Belgrave, Feryal Behbahani, Luisa Zint-
graf and all the other kind folks at DeepMind. Additionally, I’d also
like to thank Michael Herman, Christian Daniel, and everyone else at
the Bosch Center for AI.

Finally, I’d like to thank my family and friends. Pascal, je bent mijn
steun en toeverlaat. Bedankt voor je grenzeloze enthousiasme, alle
middernachtelijke peptalks, en de cuba libres. Mam, bedankt voor je
standvastige vertrouwen in mijn kunnen, en bedankt dat je me hebt
opgevoed met het idee dat ik alles kan waar ik mijn best voor doe.
Emma, ik ben je zeer dankbaar voor je vriendschap van de afgelopen
16 jaar. Ik kan mijn leven niet voorstellen zonder jou. Ik ben heel
dankbaar voor mijn andere lieve vrienden, die een bron waren van
energie, comfort, en afleiding tijdens de PhD: Eszter, Bas, Tessa, Chiel,
Sander, Jelte, Willemijn, Jorn, Fabien. Bedankt familie Mazier, dat jullie
mij lang geleden opgevangen hebben. Bedankt familie Mettes, dat
jullie mij zo volledig in de familie opgenomen hebben.

111

Bibliography

[1] Farzad Abdolhosseini, Hung Yu Ling, Zhaoming Xie, Xue Bin
Peng, and Michiel van de Panne. On learning symmetric lo-
comotion. In ACM SIGGRAPH Motion, Interaction, and Games.
2019.

[2] Rishabh Agarwal, Marlos C. Machado, Pablo Samuel Castro,
and Marc G. Bellemare. Contrastive behavioral similarity em-
beddings for generalization in reinforcement learning. In Inter-
national Conference on Learning Representations, 2021.

[3] Pulkit Agrawal, Ashvin Nair, Pieter Abbeel, Jitendra Malik, and
Sergey Levine. Learning to poke by poking: Experiential learn-
ing of intuitive physics. In Advances in Neural Information Pro-
cessing Systems, 2016.

[4] Nele Albers, Miguel Suau, and Frans A. Oliehoek. Using bisim-
ulation metrics to analyze and evaluate latent state representa-
tions. In Belgian-Dutch Conference on Machine Learning, 2021.

[5] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano,
John Schulman, and Dan Mané. Concrete problems in AI safety.
arXiv:1606.06565, 2016.

[6] Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-
Alexandre Cote, and R. Devon Hjelm. Unsupervised state rep-
resentation learning in Atari. In Advances in Neural Information
Processing Systems, 2019.

[7] Brandon Anderson, Truong Son Hy, and Risi Kondor. Cor-
morant: Covariant molecular neural networks. In Advances in
Neural Information Processing Systems, 2019.

[8] Masataro Asai. Unsupervised grounding of plannable first-
order logic representation from images. In International Confer-
ence on Automated Planning and Scheduling, 2019.

112

[9] Yusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine, Ziyu
Wang, and Nando de Freitas. Playing hard exploration games by
watching youtube. In Advances in Neural Information Processing
Systems, 2018.

[10] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson.
Neuronlike adaptive elements that can solve difficult learning
control problems. IEEE transactions on systems, man, and cybernet-
ics, 1983.

[11] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez
Rezende, and Koray Kavukcuoglu. Interaction networks for
learning about objects, relations and physics. In Advances in Neu-
ral Information Processing, 2016.

[12] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro
Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malinowski,
Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
et al. Relational inductive biases, deep learning, and graph net-
works. arXiv preprint arXiv:1806.01261, 2018.

[13] Erik J. Bekkers. B-spline CNNs on Lie groups. In International
Conference on Learning Representations, 2019.

[14] Erik J. Bekkers, Maxime W. Lafarge, Mitko Veta, Koen A.J. Ep-
penhof, Josien P.W. Pluim, and Remco Duits. Roto-translation
covariant convolutional networks for medical image analy-
sis. In International Conference on Medical Image Computing and
Computer-Assisted Intervention, 2018.

[15] Richard E. Bellman. Dynamic Programming. 1957.

[16] Ondrej Biza and Robert Platt. Online abstraction with MDP ho-
momorphisms for deep learning. In International Conference on
Autonomous Agents and Multi-Agent Systems, 2019.

[17] Ondrej Biza, Elise van der Pol, and Thomas Kipf. The impact
of negative sampling on contrastive structured world models.
In ICML Workshop on Self-Supervised Learning for Reasoning and
Perception, 2021.

[18] Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. Deep
coordination graphs. In International Conference on Machine Learn-
ing, 2020.

[19] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason
Weston, and Oksana Yakhnenko. Translating embeddings for
modeling multi-relational data. In Advances in Neural Information
Processing, 2013.

113

[20] Nicolò Botteghi, Mannes Poel, Beril Sirmacek, and Christoph
Brune. Low-dimensional state and action representation
learning with MDP homomorphism metrics. arXiv preprint
arXiv:2107.01677, 2021.

[21] Craig Boutilier. Planning, learning and coordination in multi-
agent decision processes. In Conference on Theoretical aspects of
rationality and knowledge, 1996.

[22] Craig Boutilier, Richard Dearden, Moisés Goldszmidt, et al. Ex-
ploiting structure in policy construction. In International Joint
Conference on Artificial Intelligence, 1995.

[23] Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J.
Bekkers, and Max Welling. Geometric and physical quantities
improve E(3) equivariant message passing. In International Con-
ference on Learning Representations, 2021.

[24] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.
OpenAI gym. arXiv preprint arXiv:1606.01540, 2016.

[25] Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh
Kabra, Irina Higgins, Matt Botvinick, and Alexander Lerchner.
Monet: Unsupervised scene decomposition and representation.
arXiv preprint arXiv:1901.11390, 2019.

[26] Pablo Samuel Castro. Scalable methods for computing state sim-
ilarity in deterministic Markov decision processes. In AAAI Con-
ference on Artificial Intelligence, 2020.

[27] Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, and
Mark Rowland. MICo: Improved representations via sampling-
based state similarity for Markov decision processes. In Advances
in Neural Information Processing Systems, 2021.

[28] Michael B. Chang, Tomer Ullman, Antonio Torralba, and
Joshua B. Tenenbaum. A compositional object-based approach to
learning physical dynamics. In International Conference on Learn-
ing Representations, 2017.

[29] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-
frey Hinton. A simple framework for contrastive learning of vi-
sual representations. In International Conference on Machine Learn-
ing, 2020.

[30] Christopher Clark and Amos Storkey. Teaching deep convolu-
tional neural networks to play Go. In International Conference on
Machine Learning, 2015.

114

[31] Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John
Schulman. Quantifying generalization in reinforcement learn-
ing. In International Conference on Machine Learning, 2019.

[32] Taco S. Cohen, Mario Geiger, Jonas Koehler, and Max Welling.
Spherical CNNs. In International Conference on Learning Represen-
tations, 2018.

[33] Taco S. Cohen, Mario Geiger, and Maurice Weiler. A general the-
ory of equivariant CNNs on homogeneous spaces. In Advances
in Neural Information Processing Systems. 2019.

[34] Taco S. Cohen and Max Welling. Group equivariant convolu-
tional networks. In International Conference on Machine Learning,
2016.

[35] Taco S. Cohen and Max Welling. Steerable CNNs. In International
Conference on Learning Representations, 2017.

[36] Dane Corneil, Wulfram Gerstner, and Johanni Brea. Efficient
model-based deep reinforcement learning with variational state
tabulation. In International Conference on Machine Learning, 2018.

[37] Andreea Deac, Petar Veličković, Ognjen Milinković, Pierre-Luc
Bacon, Jian Tang, and Mladen Nikolić. XLVIN: executed latent
value iteration nets. arXiv preprint arXiv:2010.13146, 2020.

[38] Thomas Dean and Robert Givan. Model minimization in
Markov decision processes. In AAAI Conference on Artifical In-
telligence/IAAI Conference on Innovative Applications of Artificial In-
telligence, 1997.

[39] Neel Dey, Antong Chen, and Soheil Ghafurian. Group equivari-
ant generative adversarial networks. In International Conference
on Learning Representations, 2021.

[40] Nichita Diaconu and Daniel E. Worrall. Learning to convolve:
A generalized weight-tying approach. In International Conference
on Machine Learning, 2019.

[41] Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Ried-
miller, and Thomas Brox. Discriminative unsupervised feature
learning with convolutional neural networks. In Advances in
Neural Information Processing Systems, 2014.

[42] David Steven Dummit and Richard M. Foote. Abstract Algebra.
Wiley, 2004.

115

[43] Sebastien Ehrhardt, Aron Monszpart, Niloy Mitra, and Andrea
Vedaldi. Unsupervised intuitive physics from visual observa-
tions. In Asian Conference on Computer Vision, 2018.

[44] Martin Engelcke, Adam R Kosiorek, Oiwi Parker Jones, and Ing-
mar Posner. GENESIS: Generative scene inference and sampling
with object-centric latent representations. International Conference
on Learning Representations, 2020.

[45] Gregory Farquhar, Tim Rocktäschel, Maximilian Igl, and
SA Whiteson. TreeQN and ATreeC: Differentiable tree-
structured models for deep reinforcement learning. In Interna-
tional Conference on Learning Representations, 2018.

[46] Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics
for finite Markov decision processes. In Conference on Uncertainty
in Artificial Intelligence, 2004.

[47] Norm Ferns, Prakash Panangaden, and Doina Precup. Bisimu-
lation metrics for continuous Markov decision processes. SIAM
Journal on Computing, 2011.

[48] Norman Ferns, Pablo Samuel Castro, Doina Precup, and
Prakash Panangaden. Methods for computing state similarity
in Markov decision processes. In Conference on Uncertainty in
Artificial Intelligence, 2012.

[49] Norman Ferns and Doina Precup. Bisimulation metrics are op-
timal value functions. In Conference on Uncertainty in Artificial
Intelligence, 2014.

[50] Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gor-
don Wilson. Generalizing convolutional neural networks for
equivariance to Lie groups on arbitrary continuous data. In In-
ternational Conference on Machine Learning, 2020.

[51] Vincent François-Lavet, Yoshua Bengio, Doina Precup, and Joelle
Pineau. Combined reinforcement learning via abstract represen-
tations. In AAAI Conference on Artificial Intelligence, 2019.

[52] Fabian B Fuchs, Daniel E Worrall, Volker Fischer, and Max
Welling. SE (3)-transformers: 3D roto-translation equivariant at-
tention networks. Advances in Neural Information Processing Sys-
tems, 2020.

[53] Victor Garcia Satorras and Joan Bruna. Few-shot learning with
graph neural networks. In International Conference on Learning
Representations, 2018.

116

[54] Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum,
and Marc G. Bellemare. DeepMDP: Learning continuous latent
space models for representation learning. In International Con-
ference on Machine Learning, 2019.

[55] Dibya Ghosh, Abhishek Gupta, and Sergey Levine. Learning
actionable representations with goal conditioned policies. In In-
ternational Conference on Learning Representations, 2019.

[56] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol
Vinyals, and George E Dahl. Neural message passing for quan-
tum chemistry. In International Conference on Machine Learning,
2017.

[57] Robert Givan, Thomas Dean, and Matthew Greig. Equivalence
notions and model minimization in Markov decision processes.
In Artificial Intelligence, 2003.

[58] Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Wat-
ters, Christopher Burgess, Daniel Zoran, Loic Matthey, Matthew
Botvinick, and Alexander Lerchner. Multi-object representation
learning with iterative variational inference. In International Con-
ference on Machine Learning, 2019.

[59] Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber.
Neural expectation maximization. In Advances in Neural Infor-
mation Processing, 2017.

[60] Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. On
the binding problem in artificial neural networks. arXiv preprint
arXiv:2012.05208, 2020.

[61] Aditya Grover and Jure Leskovec. node2vec: Scalable feature
learning for networks. In International Conference on Knowledge
Discovery and Data Mining, 2016.

[62] Carlos Guestrin, Daphne Koller, and Ronald Parr. Multiagent
planning with factored MDPs. In Advances in Neural Information
Processing Systems, 2002.

[63] Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha
Venkataraman. Efficient solution algorithms for factored MDPs.
Journal of Artificial Intelligence Research, 2003.

[64] Carlos Guestrin, Michail Lagoudakis, and Ronald Parr. Coordi-
nated reinforcement learning. In International Conference on Ma-
chine Learning, 2002.

117

[65] Carlos Guestrin, Shobha Venkataraman, and Daphne Koller.
Context-specific multiagent coordination and planning with fac-
tored MDPs. In AAAI Conference on Artifical Intelligence/IAAI
Conference on Innovative Applications of Artificial Intelligence, 2002.

[66] David Ha and Jürgen Schmidhuber. World models. arxiv preprint
arXiv:1803.10122, 2018.

[67] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas,
David Ha, Honglak Lee, and James Davidson. Learning latent
dynamics for planning from pixels. In International Conference on
Machine Learning, 2019.

[68] Charles R. Harris, K. Jarrod Millman, Stéfan J van der Walt,
Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser,
Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern,
Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler
Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke,
and Travis E. Oliphant. Array programming with NumPy. Na-
ture, 2020.

[69] Juris Hartmanis and R. E. Stearns. Algebraic Structure Theory Of
Sequential Machines. Prentice-Hall, Inc., 1966.

[70] Peter Henderson, Riashat Islam, Joelle Pineau, David Meger,
Doina Precup, and Philip Bachman. Deep reinforcement learn-
ing that matters. In AAAI Conference on Artificial Intelligence,
2018.

[71] Irina Higgins, David Amos, David Pfau, Sebastien Racaniere,
Loic Matthey, Danilo Rezende, and Alexander Lerchner. To-
wards a definition of disentangled representations. arxiv preprint
arXiv:1812.02230, 2018.

[72] R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon,
Karan Grewal, Adam Trischler, and Yoshua Bengio. Learn-
ing deep representations by mutual information estimation and
maximization. In International Conference on Learning Representa-
tions, 2019.

[73] Yedid Hoshen. VAIN: Attentional multi-agent predictive mod-
eling. In Advances in Neural Information Processing, 2017.

[74] Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Fo-
erster. "Other-play" for zero-shot coordination. In International
Conference on Machine Learning, 2020.

118

[75] Wenlong Huang, Igor Mordatch, and Deepak Pathak. One
policy to control them all: Shared modular policies for agent-
agnostic control. In International Conference on Machine Learning,
2020.

[76] Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and
Shimon Whiteson. Deep variational reinforcement learning for
POMDPs. In International Conference on Machine Learning, 2018.

[77] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czar-
necki, Tom Schaul, Joel Z. Leibo, David Silver, and Koray
Kavukcuoglu. Reinforcement learning with unsupervised auxil-
iary tasks. In International Conference on Learning Representations,
2017.

[78] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparame-
terization with Gumbel-Softmax. In International Conference on
Learning Representations, 2017.

[79] Michael Janner, Sergey Levine, William T Freeman, Joshua B
Tenenbaum, Chelsea Finn, and Jiajun Wu. Reasoning about
physical interactions with object-oriented prediction and plan-
ning. In International Conference on Learning Representations, 2019.

[80] Miguel Jaques, Michael Burke, and Timothy Hospedales.
Physics-as-inverse-graphics: Joint unsupervised learning of ob-
jects and physics from video. arXiv preprint arXiv:1905.11169,
2019.

[81] Jiechuan Jiang, Chen Dun, Tiejun Huang, and Zongqing Lu.
Graph convolutional reinforcement learning. In International
Conference on Learning Representations, 2020.

[82] Rico Jonschkowski and Oliver Brock. Learning state representa-
tions with robotic priors. In Autonomous Robots, 2015.

[83] Daniel Kahneman and Anne Treisman. Changing views of Atten-
tion and Automaticity. Academic Press, Inc., 1984.

[84] Daniel Kahneman, Anne Treisman, and Brian J Gibbs. The re-
viewing of object files: Object-specific integration of informa-
tion. Cognitive psychology, 1992.

[85] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Os-
inski, Roy H. Campbell, Konrad Czechowski, Dumitru Erhan,
Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-
based reinforcement learning for Atari. In International Confer-
ence on Learning Representations, 2020.

119

[86] Peter Karkus, David Hsu, and Wee Sun Lee. QMDP-net: Deep
learning for planning under partial observability. In Advances in
Neural Information Processing Systems, 2017.

[87] Tejaswi Kasarla, Gertjan J Burghouts, Max van Spengler, Elise
van der Pol, Rita Cucchiara, and Pascal Mettes. Maximum
class separation as inductive bias in one matrix. arXiv preprint
arXiv:2206.08704, 2022.

[88] Michael Kearns and Daphne Koller. Efficient reinforcement
learning in factored MDPs. In International Joint Conference on
Artificial Intelligence, 1999.

[89] Mete Kemertas and Tristan Aumentado-Armstrong. Towards ro-
bust bisimulation metric learning. Advances in Neural Information
Processing Systems, 2021.

[90] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for
stochastic optimization. In International Conference on Learning
Representations, 2015.

[91] Diederik P. Kingma and Max Welling. Auto-encoding varia-
tional bayes. In International Conference on Learning Representa-
tions, 2014.

[92] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling,
and Richard Zemel. Neural relational inference for interacting
systems. In International Conference on Machine Learning, 2018.

[93] Thomas Kipf, Yujia Li, Hanjun Dai, Vinicius Zambaldi, Alvaro
Sanchez-Gonzalez, Edward Grefenstette, Pushmeet Kohli, and
Peter Battaglia. Compile: Compositional imitation learning and
execution. In International Conference on Machine Learning, 2019.

[94] Thomas Kipf, Elise van der Pol, and Max Welling. Contrastive
learning of structured world models. In International Conference
on Learning Representations, 2020.

[95] Thomas N. Kipf and Max Welling. Semi-supervised classifica-
tion with graph convolutional networks. In International Confer-
ence on Learning Representations, 2017.

[96] Martin Klissarov and Doina Precup. Diffusion-based approxi-
mate value functions. In ICML Workshop on Efficient Credit As-
signment in Deep Learning and Deep Reinforcement Learning, 2018.

[97] Jelle R Kok and Nikos Vlassis. Collaborative multiagent rein-
forcement learning by payoff propagation. Journal of Machine
Learning Research, 2006.

120

[98] Risi Kondor and Shubhendu Trivedi. On the generalization of
equivariance and convolution in neural networks to the action of
compact groups. In International Conference on Machine Learning,
2018.

[99] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmenta-
tion is all you need: Regularizing deep reinforcement learning
from pixels. In International Conference on Learning Representa-
tions, 2021.

[100] Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforce-
ment learning as a rehearsal for decentralized planning. Neuro-
computing, 2016.

[101] Schütt Kristof, Kindermans Pieter-Jan, Sauceda Huziel, Chmiela
Stefan, Tkatchenko Alexandre, and Klaus-Robert Müller. Schnet:
a continuous-filter convolutional neural network for modeling
quantum interactions. In Advances in Neural Information Process-
ing Systems, 2017.

[102] Vitaly Kurin, Maximilian Igl, Tim Rocktäschel, Wendelin
Boehmer, and Shimon Whiteson. My body is a cage: the role
of morphology in graph-based incompatible control. In Interna-
tional Conference on Learning Representations, 2021.

[103] Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and
Pieter Abbeel. Model-ensemble trust-region policy optimization.
In International Conference on Learning Representations, 2018.

[104] Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart Russell, and
Pieter Abbeel. Learning plannable representations with causal
infogan. In Advances in Neural Information Processing Systems,
2018.

[105] Lior Kuyer, Shimon Whiteson, Bram Bakker, and Nikos Vlassis.
Multiagent reinforcement learning for urban traffic control us-
ing coordination graphs. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, 2008.

[106] Charline Le Lan, Marc G Bellemare, and Pablo Samuel Castro.
Metrics and continuity in reinforcement learning. In AAAI Con-
ference on Artificial Intelligence, 2021.

[107] Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter
Abbeel, and Aravind Srinivas. Reinforcement learning with aug-
mented data. In Advances in Neural Information Processing Sys-
tems, 2020.

121

[108] Adrien Laversanne-Finot, Alexandre Péré, and Pierre-Yves
Oudeyer. Curiosity driven exploration of learned disentangled
goal spaces. In Conference on Robot Learning, 2018.

[109] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. IEEE,
1998.

[110] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and
F Huang. A tutorial on energy-based learning. Predicting struc-
tured data, 2006.

[111] Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Network
randomization: A simple technique for generalization in deep
reinforcement learning. In International Conference on Learning
Representations, 2020.

[112] Lisa Lee, Emilio Parisotto, Devendra Singh Chaplot, Eric P. Xing,
and Ruslan Salakhutdinov. Gated path planning networks. In
International Conference on Machine Learning, 2018.

[113] Lihong Li, Thomas J. Walsh, and Michael L. Littman. Towards
a unified theory of state abstraction for MDPs. In International
Symposium on Artificial Intelligence and Mathematics, 2006.

[114] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard
Zemel. Gated graph sequence neural networks. arXiv preprint
arXiv:1511.05493, 2015.

[115] Yijiong Lin, Jiancong Huang, Matthieu Zimmer, Yisheng Guan,
Juan Rojas, and Paul Weng. Invariant transform experience re-
play: Data augmentation for deep reinforcement learning. IEEE
Robotics and Automation Letters, 2020.

[116] Guoqing Liu, Chuheng Zhang, Li Zhao, Tao Qin, Jinhua Zhu,
Jian Li, Nenghai Yu, and Tie-Yan Liu. Return-based contrastive
representation learning for reinforcement learning. In Interna-
tional Conference on Learning Representations, 2021.

[117] Iou-Jen Liu, Raymond A. Yeh, and Alexander G. Schwing. PIC:
Permutation invariant critic for multi-agent deep reinforcement
learning. In Conference on Robot Learning, 2019.

[118] Anuj Mahajan and Theja Tulabandhula. Symmetry learn-
ing for function approximation in reinforcement learning.
arXiv:1706.02999, 2017.

[119] Aditi Mavalankar. Goal-conditioned batch reinforcement learn-
ing for rotation invariant locomotion. In ICLR Workshop Beyond
Tabula Rasa in RL, 2020.

122

[120] Pascal Mettes, Elise van der Pol, and Cees Snoek. Hyperspheri-
cal prototype networks. Advances in Neural Information Processing
Systems, 2019.

[121] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Ef-
ficient estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781, 2013.

[122] Shruti Mishra, Abbas Abdolmaleki, Arthur Guez, Piotr Trochim,
and Doina Precup. Augmenting learning using symmetry in
a biologically-inspired domain. arXiv preprint arXiv:1910.00528,
2019.

[123] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for
training neural probabilistic language models. In International
Conference on Machine Learning, 2012.

[124] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza,
Alex Graves, Tim Harley, Timothy P. Lillicrap, David Silver, and
Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In International Conference on Machine Learning,
2016.

[125] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A.
Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Ried-
miller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King,
Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis
Hassabis. Human-level control through deep reinforcement
learning. In Nature, 2015.

[126] Arnab Kumar Mondal, Vineet Jain, Kaleem Siddiqi, and Sia-
mak Ravanbakhsh. EqR: Equivariant representations for data-
efficient reinforcement learning. In International Conference on
Machine Learning, 2021.

[127] Shravan Matthur Narayanamurthy and Balaraman Ravindran.
On the hardness of finding symmetries in Markov decision pro-
cesses. In International Conference on Machine learning, 2008.

[128] Charlie Nash, Ali Eslami, Chris Burgess, Irina Higgins, Daniel
Zoran, Theophane Weber, and Peter Battaglia. The multi-entity
variational autoencoder. In Advances in Neural Information Pro-
cessing Workshops, 2017.

[129] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy
Gabrilovich. A review of relational machine learning for knowl-
edge graphs. IEEE, 2016.

123

[130] Sufeng Niu, Siheng Chen, Colin Targonski, Melissa Smith, Je-
lena Kova evi, and Hanyu Guo. Generalized value iteration
networks: Life beyond lattices. In AAAI Conference on Artificial
Intelligence, 2018.

[131] Future of Life Institute. Autonomous weapons: An open letter
from AI & robotics researchers, 2015.

[132] Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction
network. In Advances in Neural Information Processing Systems,
2017.

[133] Frans A. Oliehoek, Matthijs T.J. Spaan, and Nikos Vlassis.
Optimal and approximate Q-value functions for decentralized
POMDPs. Journal of Artificial Intelligence Research, 2008.

[134] Rahul Oliehoek, Frans A.and Savani, Jose Gallego, Elise van der
Pol, and Roderich Groß. Beyond local Nash equilibria for ad-
versarial networks. In Benelux Conference on Artificial Intelligence,
2018.

[135] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representa-
tion learning with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

[136] Jung Yeon Park, Ondrej Biza, Linfeng Zhao, Jan-Willem van de
Meent, and Robin Walters. Learning symmetric embeddings for
equivariant world models. In International Conference on Machine
Learning, 2021.

[137] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan,
Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison,
Luca Antiga, and Adam Lerer. Automatic differentiation in py-
torch. In Advances in Neural Information Processing Autodiff Work-
shop, 2017.

[138] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Na-
talia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Infor-
mation Processing Systems, 2019.

[139] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk:
Online learning of social representations. In International Confer-
ence on Knowledge Discovery and Data Mining, 2014.

124

[140] Martin L Puterman. Markov Decision Processes: Discrete Stochastic
Dynamic Programming. John Wiley & Sons, Inc., 1994.

[141] Balaraman Ravindran and Andrew G. Barto. Symmetries and
model minimization in Markov decision processes. Technical
report, University of Massachusetts, 2001.

[142] Balaraman Ravindran and Andrew G. Barto. SMDP homomor-
phisms: An algebraic approach to abstraction in semi-Markov
decision processes. In International Joint Conference on Artificial
Intelligence, 2003.

[143] Balaraman Ravindran and Andrew G. Barto. Approximate ho-
momorphisms: A framework for non-exact minimization in
Markov decision processes. In International Conference on Knowl-
edge Based Computer Systems, 2004.

[144] Philipp Robbel, Frans A. Oliehoek, and Mykel J. Kochender-
fer. Exploiting anonymity in approximate linear programming:
Scaling to large multiagent MDPs. In AAAI Conference on Artifi-
cial Intelligence, 2016.

[145] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic
routing between capsules. In Advances in Neural Information Pro-
cessing, 2017.

[146] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springen-
berg, Josh Merel, Martin Riedmiller, Raia Hadsell, and Peter
Battaglia. Graph networks as learnable physics engines for infer-
ence and control. In International Conference on Machine Learning,
2018.

[147] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling.
E(n) equivariant graph neural networks. In International Con-
ference on Machine Learning, 2021.

[148] Victor Garcia Satorras and Max Welling. Neural enhanced be-
lief propagation on factor graphs. In International Conference on
Artificial Intelligence and Statistics, 2021.

[149] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagen-
buchner, and Gabriele Monfardini. The graph neural network
model. IEEE Transactions on Neural Networks, 2009.

[150] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van
Den Berg, Ivan Titov, and Max Welling. Modeling relational data
with graph convolutional networks. 2017.

125

[151] Nicol N. Schraudolph, Peter Dayan, and Terrence J. Sejnowski.
Temporal difference learning of position evaluation in the game
of Go. In Advances in Neural Information Processing Systems, 1994.

[152] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert,
Karen Simonyan, Laurent Sifre, Simon Schmitt, Arthur Guez,
Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P.
Lillicrap, and David Silver. Mastering Atari, Go, chess and Shogi
by planning with a learned model. 2019.

[153] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov. Proximal policy optimization algorithms. In
arXiv:1707.06347, 2017.

[154] Dale Schuurmans and Relu Patrascu. Direct value-
approximation for factored MDPs. Advances in Neural Informa-
tion Processing Systems, 2001.

[155] Dhruv Sharma, Alihusein Kuwajerwala, and Florian Shkurti.
Augmenting imitation experience via equivariant representa-
tions. In International Conference on Robotics and Automation, 2022.

[156] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioan-
nis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of Go with deep neural networks and tree
search. In Nature, 2016.

[157] Gregor N.C. Simm, Robert Pinsler, Gábor Csányi, and
José Miguel Hernández-Lobato. Symmetry-aware actor-critic for
3D molecular design. In International Conference on Learning Rep-
resentations, 2021.

[158] Aravind Srinivas, Michael Laskin, and Pieter Abbeel. CURL:
Contrastive unsupervised representations for reinforcement
learning. In International Conference on Machine Learning, 2020.

[159] Adam Stooke and Pieter Abbeel. rlpyt: A research code
base for deep reinforcement learning in Pytorch. arxiv preprint
arXiv:1909.01500, 2019.

[160] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learning
multiagent communication with backpropagation. In Advances
in Neural Information Processing Systems, 2016.

[161] Chen Sun, Abhinav Shrivastava, Carl Vondrick, Kevin Murphy,
Rahul Sukthankar, and Cordelia Schmid. Actor-centric relation
network. In European Conference on Computer Vision, 2018.

126

[162] Chen Sun, Abhinav Shrivastava, Carl Vondrick, Rahul Suk-
thankar, Kevin Murphy, and Cordelia Schmid. Relational action
forecasting. In IEEE Conference on Computer Vision and Pattern
Recognition, 2019.

[163] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Mar-
ian Czarnecki, Vinicius Zambaldi, Max Jaderberg, Marc Lanc-
tot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-
decomposition networks for cooperative multi-agent learning.
In International Conference on Autonomous Agents and Multi-Agent
Systems, 2018.

[164] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter
Abbeel. Value iteration networks. In Advances in Neural Informa-
tion Processing Systems, 2016.

[165] Jonathan Taylor, Doina Precup, and Prakash Panagaden. Bound-
ing performance loss in approximate MDP homomorphisms. In
Advances in Neural Information Processing Systems, 2008.

[166] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang,
Li Li, Kai Kohlhoff, and Patrick Riley. Tensor field networks:
Rotation-and translation-equivariant neural networks for 3D
point clouds. arXiv preprint arXiv:1802.08219, 2018.

[167] Valentin Thomas, Emmanuel Bengio, William Fedus, Jules Pon-
dard, Philippe Beaudoin, Hugo Larochelle, Joelle Pineau, Doina
Precup, and Yoshua Bengio. Disentangling the independently
controllable factors of variation by interacting with the world.
arXiv preprint arXiv:1802.09484, 2018.

[168] Valentin Thomas, Jules Pondard, Emmanuel Bengio, Marc Sar-
fati, Philippe Beaudoin, Marie-Jean Meurs, Joelle Pineau, Doina
Precup, and Yoshua Bengio. Independently controllable factors.
arxiv preprint arXiv:1708.01289, 2017.

[169] Elise van der Pol, Ian Gemp, Yoram Bachrach, and Richard Ev-
erett. Stochastic parallelizable eigengap dilation for large graph
clustering. arXiv preprint arXiv:2207.14589, 2022.

[170] Elise van der Pol, Thomas Kipf, Frans A. Oliehoek, and Max
Welling. Plannable approximations to MDP homomorphisms:
Equivariance under actions. In International Conference on Au-
tonomous Agents and Multi-Agent Systems, 2020.

[171] Elise van der Pol and Frans A. Oliehoek. Coordinated deep rein-
forcement learners for traffic light control. In NeurIPS Workshop
on Learning, Inference and Control of Multi-Agent Systems, 2016.

127

[172] Elise van der Pol, Herke van Hoof, Frans A. Oliehoek, and Max
Welling. Multi-agent MDP homomorphic networks. In Interna-
tional Conference on Learning Representations, 2022.

[173] Elise van der Pol, Daniel E. Worrall, Herke van Hoof, Frans A.
Oliehoek, and Max Welling. MDP homomorphic networks:
Group symmetries in reinforcement learning. In Advances in
Neural Information Processing Systems, 2020.

[174] Sjoerd van Steenkiste, Michael Chang, Klaus Greff, and Jürgen
Schmidhuber. Relational neural expectation maximization: Un-
supervised discovery of objects and their interactions. In Inter-
national Conference on Learning Representations, 2018.

[175] Pradeep Varakantham, Yossiri Adulyasak, and Patrick Jaillet.
Decentralized stochastic planning with anonymity in interac-
tions. In AAAI Conference on Artificial Intelligence, 2014.

[176] Petar Veličković, William Fedus, William L. Hamilton, Pietro
Liò, Yoshua Bengio, and R. Devon Hjelm. Deep graph infomax.
In International Conference on Learning Representations, 2019.

[177] K.P. Wabersich and M.N. Zeilinger. Linear model predictive
safety certification for learning-based control. In IEEE Confer-
ence on Decision and Control, 2018.

[178] Angelina Wang, Thanard Kurutach, Kara Liu, Pieter Abbeel, and
Aviv Tamar. Learning robotic manipulation through visual plan-
ning and acting. In Robotics: Science and Systems, 2019.

[179] Dian Wang, Robin Walters, and Robert Platt. SO(2)-equivariant
reinforcement learning. In International Conference on Learning
Representations, 2022.

[180] Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Ner-
venet: Learning structured policy with graph neural networks.
In International Conference on Learning Representations, 2018.

[181] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen.
Knowledge graph embedding by translating on hyperplanes. In
AAAI Conference on Artificial Intelligence, 2014.

[182] Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker,
and Martin Riedmiller. Embed to control: a locally linear la-
tent dynamics model for control from raw images. In Advances
in Neural Information Processing Systems, 2015.

128

[183] Nicholas Watters, Loic Matthey, Matko Bosnjak, Christopher P.
Burgess, and Alexander Lerchner. COBRA: data-efficient model-
based RL through unsupervised object discovery and curiosity-
driven exploration. arxiv preprint arXiv:1905.09275, 2019.

[184] Nicholas Watters, Daniel Zoran, Theophane Weber, Peter
Battaglia, Razvan Pascanu, and Andrea Tacchetti. Visual inter-
action networks: Learning a physics simulator from video. In
Advances in Neural Information Processing, 2017.

[185] Hua Wei, Guanjie Zheng, Vikash Gayah, and Zhenhui Li.
A survey on traffic signal control methods. arXiv preprint
arXiv:1904.08117, 2019.

[186] Maurice Weiler and Gabriele Cesa. General E(2)-equivariant
steerable CNNs. In Advances in Neural Information Processing Sys-
tems, 2019.

[187] Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma,
and Taco S Cohen. 3D steerable CNNs: Learning rotationally
equivariant features in volumetric data. In Advances in Neural
Information Processing Systems, 2018.

[188] Maurice Weiler, Fred A. Hamprecht, and Martin Storath. Learn-
ing steerable filters for rotation equivariant CNNs. In IEEE Con-
ference on Computer Vision and Pattern Recognition, 2018.

[189] Matthias Weissenbacher, Samarth Sinha, Animesh Garg, and
Yoshinobu Kawahara. Koopman Q-learning: Offline reinforce-
ment learning via symmetries of dynamics. In International Con-
ference on Learning Representations, 2022.

[190] Laurens Weitkamp, Elise van der Pol, and Zeynep Akata. Visual
rationalizations in deep reinforcement learning for Atari games.
In Benelux Conference on Artificial Intelligence, 2018.

[191] Marysia Winkels and Taco S. Cohen. 3D G-CNNs for pulmonary
nodule detection. In Medical Imaging with Deep Learning Confer-
ence, 2018.

[192] Daniel E. Worrall and Gabriel J. Brostow. CubeNet: Equivari-
ance to 3D rotation and translation. In European Conference on
Computer Vision, 2018.

[193] Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov,
and Gabriel J. Brostow. Harmonic networks: Deep translation
and rotation equivariance. In IEEE Conference on Computer Vision
and Pattern Recognition, 2017.

129

[194] Daniel E. Worrall and Max Welling. Deep scale-spaces: Equiv-
ariance over scale. In Advances in Neural Information Processing
Systems, 2019.

[195] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep
convolutional networks on 3D point clouds. In IEEE Conference
on Computer Vision and Pattern Recognition, 2019.

[196] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST:
A novel image dataset for benchmarking machine learning algo-
rithms. arxiv preprint arXiv:1708.07747, 2017.

[197] Zhenjia Xu, Zhijian Liu, Chen Sun, Kevin Murphy, William T
Freeman, Joshua B Tenenbaum, and Jiajun Wu. Unsupervised
discovery of parts, structure, and dynamics. In International Con-
ference on Learning Representations, 2019.

[198] Dmitry Yarotsky. Universal approximations of invariant maps
by neural networks. arxiv preprint arXiv:1804.10306, 2018.

[199] KiJung Yoon, Renjie Liao, Yuwen Xiong, Lisa Zhang, Ethan Fe-
taya, Raquel Urtasun, Richard Zemel, and Xaq Pitkow. Inference
in probabilistic graphical models by graph neural networks. In
ICLR Workshop Track, 2018.

[200] Amy Zhang, Adam Lerer, Sainbayar Sukhbaatar, Rob Fergus,
and Arthur Szlam. Composable planning with attributes. In
International Conference on Machine Learning, 2018.

[201] Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal,
and Sergey Levine. Learning invariant representations for rein-
forcement learning without reconstruction. In International Con-
ference on Learning Representations, 2020.

[202] Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel,
Matthew Johnson, and Sergey Levine. SOLAR: Deep structured
representations for model-based reinforcement learning. In In-
ternational Conference on Machine Learning, 2019.

[203] Xupeng Zhu, Dian Wang, Ondrej Biza, Guanang Su, Robin Wal-
ters, and Robert Platt. Sample efficient grasp learning using
equivariant models. In Robotics: Science and Systems (RSS), 2022.

[204] Martin Zinkevich and Tucker Balch. Symmetry in Markov de-
cision processes and its implications for single agent and multi
agent learning. In International Conference on Machine Learning,
2001.

131

8
Summary

In this thesis, we study symmetry and structure in deep reinforcement
learning. We divide the thesis into two different parts. In the first, we
explore how to leverage knowledge of symmetries in reinforcement
learning problems. In the second, we propose methods to learning
about the structure of an agent’s environment and individual states.

Our contributions are as follows: In Part 1 we use existing knowl-
edge of symmetries to gain improvements in data efficiency in MDPs
(Chapter 2) and knowledge of symmetries and structure to improve
data efficiency in multi-agent MDPs (Chapter 3).

• We propose MDP Homomorphic Networks (Chapter 2) [173]. MDP
homomorphic networks are neural networks that are equivariant
under symmetries in the joint state-action space of an MDP. Due to
their equivariance, we find improved data efficiency compared to
non-equivariant baselines.

• We propose Multi-Agent MDP Homomorphic Networks (Chapter 3) [172].
Multi-Agent MDP Homomorphic Networks form a class of net-
works that allows distributed execution using only local informa-
tion, yet is able to share experience between global symmetries in
the joint state-action space of cooperative multi-agent systems. We
show that global equivariance improves data efficiency compared
to non-equivariant distributed networks on symmetric coordination
problems.

132

In Part 2 we consider learning the underlying graphs of MDPs (Chap-
ter 4) and structure in individual states (Chapter 5).

• We propose PRAE (Chapter 4) [170]. PRAE exploits action equivari-
ance for representation learning in reinforcement learning. Equiv-
ariance under actions states that transitions in the input space are
mirrored by equivalent transitions in latent space, while the map
and transition functions should also commute. We prove that under
certain assumptions, the map we learn is an MDP homomorphism
and show empirically that the approach is data-efficient and fast to
train, generalizing well to new goal states and instances with the
same environmental dynamics.

• We propose C-SWMs (Chapter 5) [94]. C-SWMs find object-oriented
representations of states from pixels, using contrastive coding and
graph neural network transition functions. We show improvement
in multi-step prediction and generalization to unseen environment
configurations compared to models that use decoders, unstructured
transitions, or unstructured representations.

133

9
Samenvatting - Dutch
Summary

In deze dissertatie bestuderen we symmetrieën en structuur in deep
reinforcement learning. De dissertatie bestaat uit twee delen. In het
eerste deel onderzoeken we hoe we kennis over symmetrieën kun-
nen gebruiken bij het oplossen van taken in reinforcement learning. In
het tweede deel stellen we methoden voor om over de structuur van
de omgeving van een agent en de structuur van individuele omgev-
ingstoestanden te leren.

Onze bijdragen zijn als volgt: In Deel 1 gebruiken we voorafgaande
kennis over symmetrieen om verbeteringen wat betreft data efficiëntie
in MDPs (Hoofdstuk 2) en multi-agent MDPs (Hoofdstuk 3) te verkrij-
gen.

• We stellen MDP Homomorphic Networks (Hoofdstuk 2) [173] voor.
MDP homomorphic networks zijn neurale netwerken die equivariant
zijn onder symmetrieen in de gezamenlijke ruimte van omgevingstoe-
standen en acties in een MDP. Door deze equivariantie ontdekken
we een verbetering in data efficiëntie vergeleken met netwerken die
niet equivariant zijn.

• We stellen Multi-Agent MDP Homomorphic Networks (Hoofdstuk 3) [172]
voor. Multi-Agent MDP Homomorphic Networks zijn een klasse neu-
rale netwerken die gedistribueerde uitvoering toestaan en daarvoor
alleen lokale informatie nodig hebben, doch alsnog ervaringen kan

134

delen tussen globale symmetrieen in de gezamenlijke ruimte van
omgevingstoestanden en acties in cooperatieve multi-agent syste-
men. We laten zien dat in symmetrische coordinatie problemen het
gebruik van globale equivariantie de data efficientie verbetert ten
opzichte van niet-equivariante gedistribueerde netwerken.

In Deel 2 beschouwen we het leren van de onderliggende grafen van
MDPs (Hoofdstuk 4) en het leren van de structuur in individuele
omgevingstoestanden (Hoofdstuk 5).

• We stellen PRAE (Hoofdstuk 4) [170] voor. PRAE maakt gebruik
van actie-equivariantie voor het leren van representaties in reinforce-
ment learning. Equivariantie onder acties betekent dat transities in
de invoerruimte gespiegeld worden door equivalente transities in
de latente ruimte, terwijl de functie naar de latente ruimte en de
transitiefunctie commutatief moeten zijn. We bewijzen dat de func-
tie naar de latente ruimte die we leren onder bepaalde aannames
een MDP homomorphisme is. Verder laten we zien dat de aan-
pak data-efficient is en snel leert, en goed generaliseert naar nieuwe
doelen en instanties met dezelfde omgevingsdynamiek.

• We stellen C-SWMs (Hoofdstuk 5) [94] voor. C-SWMs ontdekken
object-georienteerde representaties van omgevingstoestanden vanuit
pixels, daarbij gebruik makende van contrastive coding en graph neu-
ral network transitiefuncties. We laten vergeleken met modellen met
decoders, ongestructureerde transities of ongestructureerde repre-
sentaties verbetering zien in voorspellingen over meerdere stappen
en in generalisatie naar nieuwe configuraties van de omgeving.

	Introduction
	List of Publications

	I Symmetry
	MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning
	Introduction
	Background
	Method
	Experiments
	Related Work
	Conclusion
	Broader Impact Statement

	Appendices
	The Symmetrizer
	Experimental Settings
	Breakout Experiments
	Cartpole-v1 Deeper Network Results
	Bellman Equations

	Multi-Agent MDP Homomorphic Networks
	Introduction
	Related Work
	Background
	Distributing Symmetries over Multiple Agents
	Experiments
	E(3) Equivariance
	Conclusion
	Ethics Statement
	Reproducibility Statement

	Appendices
	Message Passing Networks, Communication, and Distribution
	Equivariance of Proposed Message Passing Layers
	Discrete Rotations of Continuous Vectors
	Experimental Details
	Architectural details

	II Structure
	Plannable Approximations to MDP Homomorphisms
	Introduction
	Background
	Learning MDP Homomorphisms
	Experiments
	Related Work
	Relation to Group Equivariance
	Conclusion

	Learning Factored Representations of Markov Decision Processes
	Introduction
	Background
	Structured World Models
	Transition Model
	Related Work
	Experiments
	Conclusions

	Conclusion
	Acknowledgments
	Summary
	Samenvatting - Dutch Summary

